These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 7735129)
1. Adrenaline stimulated glycogen breakdown in rat epitrochlearis muscles: fibre type specificity and relation to phosphorylase transformation. Jensen J; Dahl HA Biochem Mol Biol Int; 1995 Jan; 35(1):145-54. PubMed ID: 7735129 [TBL] [Abstract][Full Text] [Related]
2. Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase. Franch J; Aslesen R; Jensen J Biochem J; 1999 Nov; 344 Pt 1(Pt 1):231-5. PubMed ID: 10548555 [TBL] [Abstract][Full Text] [Related]
3. The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle. Chasiotis D Acta Physiol Scand Suppl; 1983; 518():1-68. PubMed ID: 6139934 [TBL] [Abstract][Full Text] [Related]
4. Adrenaline-mediated glycogen phosphorylase activation is enhanced in rat soleus muscle with increased glycogen content. Jensen J; Aslesen R; Jebens E; Skrondal A Biochim Biophys Acta; 1999 Oct; 1472(1-2):215-21. PubMed ID: 10572943 [TBL] [Abstract][Full Text] [Related]
5. Additivity of adrenaline and contractions on hormone-sensitive lipase, but not on glycogen phosphorylase, in rat muscle. Langfort J; Ploug T; Ihlemann J; Baranczuk E; Donsmark M; Górski J; Galbo H Acta Physiol Scand; 2003 May; 178(1):51-60. PubMed ID: 12713515 [TBL] [Abstract][Full Text] [Related]
6. Effects of adrenaline infusion on cAMP and glycogen phosphorylase in fast-twitch and slow-twitch rat muscles. Chasiotis D Acta Physiol Scand; 1985 Nov; 125(3):537-40. PubMed ID: 3002131 [TBL] [Abstract][Full Text] [Related]
7. Improved insulin-stimulated glucose uptake and glycogen synthase activation in rat skeletal muscles after adrenaline infusion: role of glycogen content and PKB phosphorylation. Jensen J; Ruzzin J; Jebens E; Brennesvik EO; Knardahl S Acta Physiol Scand; 2005 Jun; 184(2):121-30. PubMed ID: 15916672 [TBL] [Abstract][Full Text] [Related]
8. Adrenaline-mediated glycogenolysis in different skeletal muscle fibre types in the anaesthetized rat. Jensen J; Dahl HA; Opstad PK Acta Physiol Scand; 1989 Jun; 136(2):229-33. PubMed ID: 2782095 [TBL] [Abstract][Full Text] [Related]
9. Stimulation of glycogenolysis by beta adrenergic agonists in skeletal muscle of mice with the phosphorylase kinase deficiency mutation (I strain). Gross SR; Mayer SE; Longshore MA J Pharmacol Exp Ther; 1976 Sep; 198(3):526-38. PubMed ID: 978457 [TBL] [Abstract][Full Text] [Related]
10. Glycogen metabolism in white and red muscle or normal and diabetic rats. Degradation of glycogen by adrenaline. Sofranková A Physiol Bohemoslov; 1975; 24(6):515-20. PubMed ID: 128014 [TBL] [Abstract][Full Text] [Related]
11. Expression of hormone-sensitive lipase and its regulation by adrenaline in skeletal muscle. Langfort J; Ploug T; Ihlemann J; Saldo M; Holm C; Galbo H Biochem J; 1999 Jun; 340 ( Pt 2)(Pt 2):459-65. PubMed ID: 10333490 [TBL] [Abstract][Full Text] [Related]
12. Glycogenolytic effect of adrenaline in skeletal muscle of rats adapted to endurance exercise. Górski J Acta Physiol Pol; 1978; 29(5):437-41. PubMed ID: 747105 [TBL] [Abstract][Full Text] [Related]
13. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes. Acevedo LM; Rivero JL Cell Tissue Res; 2006 Feb; 323(2):283-303. PubMed ID: 16163488 [TBL] [Abstract][Full Text] [Related]
14. Effect of exercise and adrenaline on glycogen metabolism in skeletal muscles of hypokinetic rats. Górski J; Stankiewicz-Choroszucha B; Kozłowski S Acta Physiol Pol; 1978; 29(5):431-5. PubMed ID: 747104 [TBL] [Abstract][Full Text] [Related]
15. Regulation of skeletal muscle glycogenolysis during exercise. Hargreaves M; Richter EA Can J Sport Sci; 1988 Dec; 13(4):197-203. PubMed ID: 3064902 [TBL] [Abstract][Full Text] [Related]
16. Dose dependent reversal by i.v. glucose administration of the stimulation of rat liver glycogen phosphorylase by epinephrine infusion. Németh S; Viskupic E Endocrinol Exp; 1988 Dec; 22(4):249-54. PubMed ID: 2854048 [TBL] [Abstract][Full Text] [Related]
17. Physiological role of skeletal muscle glycogen in starved mice. Sakaida M; Watanabe J; Kanamura S; Tokunaga H; Ogawa R Anat Rec; 1987 Jul; 218(3):267-74. PubMed ID: 3631541 [TBL] [Abstract][Full Text] [Related]
18. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations. Stål P Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228 [TBL] [Abstract][Full Text] [Related]
19. Selective long-term electrical stimulation of fast glycolytic fibres increases capillary supply but not oxidative enzyme activity in rat skeletal muscles. Egginton S; Hudlická O Exp Physiol; 2000 Sep; 85(5):567-73. PubMed ID: 11038408 [TBL] [Abstract][Full Text] [Related]
20. Reduced glycogen phosphorylase activity in denervated hindlimb muscles of rat is related to muscle atrophy and fibre type. Wallis MG; Appleby GJ; Youd JM; Clark MG; Penschow JD Life Sci; 1999; 64(4):221-8. PubMed ID: 10027756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]