These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7735646)

  • 1. Real time microcontroller implementation of an adaptive myoelectric filter.
    Bagwell PJ; Chappell PH
    Med Eng Phys; 1995 Mar; 17(2):151-60. PubMed ID: 7735646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of signal-to-noise ratio of myoelectric filters for prosthesis control.
    Meek SG; Fetherston SJ
    J Rehabil Res Dev; 1992; 29(4):9-20. PubMed ID: 1432730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Expanding control possibilities of myoelectric hand prostheses].
    Reischl M; Mikut R; Pylatiuk C; Schulz S
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():868-70. PubMed ID: 12465328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive filtering of the electromyographic signal for prosthetic control and force estimation.
    Park E; Meek SG
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):1048-52. PubMed ID: 8582724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and development of an automated, portable and handheld tablet personal computer-based data acquisition system for monitoring electromyography signals during rehabilitation.
    Ahamed NU; Sundaraj K; Poo TS
    Proc Inst Mech Eng H; 2013 Mar; 227(3):262-74. PubMed ID: 23662342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising.
    Maier J; Naber A; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):506-514. PubMed ID: 29432116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration.
    Young AJ; Hargrove LJ; Kuiken TA
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):645-52. PubMed ID: 22147289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian Filtering of Surface EMG for Accurate Simultaneous and Proportional Prosthetic Control.
    Hofmann D; Jiang N; Vujaklija I; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1333-1341. PubMed ID: 26600161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoelectric signal processing for control of powered limb prostheses.
    Parker P; Englehart K; Hudgins B
    J Electromyogr Kinesiol; 2006 Dec; 16(6):541-8. PubMed ID: 17045489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real time ECG artifact removal for myoelectric prosthesis control.
    Zhou P; Lock B; Kuiken TA
    Physiol Meas; 2007 Apr; 28(4):397-413. PubMed ID: 17395995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microcomputer-based prosthetic limb controller: design and implementation.
    Hortensius P; Onyshko S; Quanbury A
    Ann Biomed Eng; 1987; 15(1):51-65. PubMed ID: 3578959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Possibilities of myoelectric control of artificial limb prostheses].
    Kitzenmaier P; Boenick U
    Biomed Tech (Berl); 1992; 37(7-8):170-80. PubMed ID: 1391603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):156-163. PubMed ID: 29994645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of controlling prosthetic hand using sonomyography signal in real time: preliminary study.
    Shi J; Chang Q; Zheng YP
    J Rehabil Res Dev; 2010; 47(2):87-98. PubMed ID: 20593322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative analysis of various EMG pattern recognition methods.
    Kang WJ; Cheng CK; Lai JS; Shiu JR; Kuo TS
    Med Eng Phys; 1996 Jul; 18(5):390-5. PubMed ID: 8818137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive neuro-fuzzy logic analysis based on myoelectric signals for multifunction prosthesis control.
    Favieiro GW; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7888-91. PubMed ID: 22256169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional neuromuscular stimulation controlled by surface electromyographic signals produced by volitional activation of the same muscle: adaptive removal of the muscle response from the recorded EMG-signal.
    Sennels S; Biering-Sørensen F; Andersen OT; Hansen SD
    IEEE Trans Rehabil Eng; 1997 Jun; 5(2):195-206. PubMed ID: 9184905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis.
    Hargrove LJ; Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):49-57. PubMed ID: 20071277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.