These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7736260)

  • 1. [Modelling of viscosity equivalent factor in the human muscle during muscular shortening].
    Martin A; Martin L; Morlon B
    C R Seances Soc Biol Fil; 1994; 188(4):379-85. PubMed ID: 7736260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental behaviour of the muscle viscosity coefficient during maximal concentric actions.
    Martin A; Martin L; Morlon B
    Eur J Appl Physiol Occup Physiol; 1994; 69(6):539-44. PubMed ID: 7713075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model of the frog skeletal muscle--analysis of non-linear mechanical properties.
    Akazawa K; Fujii K
    Front Med Biol Eng; 1989; 1(4):331-40. PubMed ID: 2486920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A linear muscle model predicts the hyperbolic force-velocity relationship.
    Enderle JD; Engelken EJ; Stiles RN
    Biomed Sci Instrum; 1989; 25():149-53. PubMed ID: 2742961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The consequences of fibre heterogeneity on the force-velocity relation of skeletal muscle.
    Josephson RK; Edman KA
    Acta Physiol Scand; 1988 Mar; 132(3):341-52. PubMed ID: 3265837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of a Hill-based muscle model to perturbations in model parameters.
    Scovil CY; Ronsky JL
    J Biomech; 2006; 39(11):2055-63. PubMed ID: 16084520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of viscosity on myocardium mechanical activity: a mathematical model.
    Katsnelson LB; Nikitina LV; Chemla D; Solovyova O; Coirault C; Lecarpentier Y; Markhasin VS
    J Theor Biol; 2004 Oct; 230(3):385-405. PubMed ID: 15302547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of static and dynamic characteristics between rectus eye muscle and linear muscle model predictions.
    Enderle JD; Engelken EJ; Stiles RN
    IEEE Trans Biomed Eng; 1991 Dec; 38(12):1235-45. PubMed ID: 1774085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic and steady state characteristics of the rabbit gastrocnemius muscle determined in series measurements.
    Wünsch Z; Hník P; Vejsada R; Cirýn J
    Physiol Bohemoslov; 1982; 31(6):521-36. PubMed ID: 6219408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanics of mouse skeletal muscle when shortening during relaxation.
    Barclay CJ; Lichtwark GA
    J Biomech; 2007; 40(14):3121-9. PubMed ID: 17499255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES.
    Giat Y; Mizrahi J; Levy M
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):664-74. PubMed ID: 8244427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of a phenomenological model for commercial pneumatic muscle actuators.
    Serres JL; Reynolds DB; Phillips CA; Gerschutz MJ; Repperger DW
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):423-30. PubMed ID: 19675979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A joint model of the contractile system of striated muscle (dynamic version).
    Wünsch Z
    Physiol Bohemoslov; 1987; 36(2):111-8. PubMed ID: 2955434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscosity as an inseparable partner of muscle contraction.
    Grazi E; Di Bona C
    J Theor Biol; 2006 Oct; 242(4):853-61. PubMed ID: 16844144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the sliding distance in shortening muscles and in polymerizing actin from Hill's force-velocity equation.
    Oplatka A
    Int J Biol Macromol; 2006 Dec; 40(1):40-6. PubMed ID: 16904176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.
    Günther M; Schmitt S; Wank V
    Biol Cybern; 2007 Jul; 97(1):63-79. PubMed ID: 17598125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscular force production after concentric contraction.
    Kosterina N; Westerblad H; Lännergren J; Eriksson A
    J Biomech; 2008 Aug; 41(11):2422-9. PubMed ID: 18619602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Muscle as a system with parametric excitation].
    Lässig P; Herold W
    Biofizika; 1984; 29(5):891-4. PubMed ID: 6509104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of shortening velocity by calponin in intact contracting smooth muscles.
    Takahashi K; Yoshimoto R; Fuchibe K; Fujishige A; Mitsui-Saito M; Hori M; Ozaki H; Yamamura H; Awata N; Taniguchi S; Katsuki M; Tsuchiya T; Karaki H
    Biochem Biophys Res Commun; 2000 Dec; 279(1):150-7. PubMed ID: 11112431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.