BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 7736589)

  • 1. The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1.
    Fülöp V; Moir JW; Ferguson SJ; Hajdu J
    Cell; 1995 May; 81(3):369-77. PubMed ID: 7736589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme.
    Williams PA; Fülöp V; Garman EF; Saunders NF; Ferguson SJ; Hajdu J
    Nature; 1997 Sep; 389(6649):406-12. PubMed ID: 9311786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two enzymes with a common function but different heme ligands in the forms as isolated. Optical and magnetic properties of the heme groups in the oxidized forms of nitrite reductase, cytochrome cd1, from Pseudomonas stutzeri and Thiosphaera pantotropha.
    Cheesman MR; Ferguson SJ; Moir JW; Richardson DJ; Zumft WG; Thomson AJ
    Biochemistry; 1997 Dec; 36(51):16267-76. PubMed ID: 9405061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the bound dioxygen species in the cytochrome oxidase reaction of cytochrome cd1 nitrite reductase.
    Sjögren T; Hajdu J
    J Biol Chem; 2001 Apr; 276(16):13072-6. PubMed ID: 11278884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal arm exchange is observed in the 2.15 A crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa.
    Nurizzo D; Silvestrini MC; Mathieu M; Cutruzzolà F; Bourgeois D; Fülöp V; Hajdu J; Brunori M; Tegoni M; Cambillau C
    Structure; 1997 Sep; 5(9):1157-71. PubMed ID: 9331415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds.
    Baker SC; Saunders NF; Willis AC; Ferguson SJ; Hajdu J; Fülöp V
    J Mol Biol; 1997 Jun; 269(3):440-55. PubMed ID: 9199411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum mechanical interpretation of nitrite reduction by cytochrome cd1 nitrite reductase from Paracoccus pantotrophus.
    Ranghino G; Scorza E; Sjögren T; Williams PA; Ricci M; Hajdu J
    Biochemistry; 2000 Sep; 39(36):10958-66. PubMed ID: 10998232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Structure of an alternative form of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase.
    Sjögren T; Hajdu J
    J Biol Chem; 2001 Aug; 276(31):29450-5. PubMed ID: 11373294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysics. Catching copper in the act.
    Aboelella NW; Reynolds AM; Tolman WB
    Science; 2004 May; 304(5672):836-7. PubMed ID: 15131298
    [No Abstract]   [Full Text] [Related]  

  • 10. Y25S variant of Paracoccus pantotrophus cytochrome cd1 provides insight into anion binding by d1 heme and a rare example of a critical difference between solution and crystal structures.
    Zajicek RS; Cheesman MR; Gordon EH; Ferguson SJ
    J Biol Chem; 2005 Jul; 280(28):26073-9. PubMed ID: 15901734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picture story. NO's way out.
    Surridge C
    Nat Struct Biol; 1995 Jun; 2(6):449. PubMed ID: 7664106
    [No Abstract]   [Full Text] [Related]  

  • 12. Activation of the cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. Reaction of oxidized enzyme with substrate drives a ligand switch at heme c.
    van Wonderen JH; Knight C; Oganesyan VS; George SJ; Zumft WG; Cheesman MR
    J Biol Chem; 2007 Sep; 282(38):28207-15. PubMed ID: 17623666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-coupled structural changes upon binding of carbon monoxide to cytochrome cd1: a combined flash photolysis and X-ray crystallography study.
    Sjögren T; Svensson-Ek M; Hajdu J; Brzezinski P
    Biochemistry; 2000 Sep; 39(36):10967-74. PubMed ID: 10998233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the unusual oxidation/reduction behavior of Paracoccus pantotrophus cytochrome cd1 nitrite reductase by replacing a switchable methionine heme iron ligand with histidine.
    Zajicek RS; Cartron ML; Ferguson SJ
    Biochemistry; 2006 Sep; 45(37):11208-16. PubMed ID: 16964982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes occurring upon reduction and NO binding in nitrite reductase from Pseudomonas aeruginosa.
    Nurizzo D; Cutruzzolà F; Arese M; Bourgeois D; Brunori M; Cambillau C; Tegoni M
    Biochemistry; 1998 Oct; 37(40):13987-96. PubMed ID: 9760233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why isn't 'standard' heme good enough for c-type and d1-type cytochromes?
    Allen JW; Barker PD; Daltrop O; Stevens JM; Tomlinson EJ; Sinha N; Sambongi Y; Ferguson SJ
    Dalton Trans; 2005 Nov; (21):3410-8. PubMed ID: 16234919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray crystallographic study of cyanide binding provides insights into the structure-function relationship for cytochrome cd1 nitrite reductase from Paracoccus pantotrophus.
    Jafferji A; Allen JW; Ferguson SJ; Fulop V
    J Biol Chem; 2000 Aug; 275(33):25089-94. PubMed ID: 10827177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrite controls the release of nitric oxide in Pseudomonas aeruginosa cd1 nitrite reductase.
    Rinaldo S; Brunori M; Cutruzzolà F
    Biochem Biophys Res Commun; 2007 Nov; 363(3):662-6. PubMed ID: 17904106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse radiolysis studies on cytochrome cd1 nitrite reductase from Thiosphaera pantotropha: evidence for a fast intramolecular electron transfer from c-heme to d1-heme.
    Kobayashi K; Koppenhöfer A; Ferguson SJ; Tagawa S
    Biochemistry; 1997 Nov; 36(44):13611-6. PubMed ID: 9354630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A switch in heme axial ligation prepares Paracoccus pantotrophus cytochrome cd1 for catalysis.
    Allen JW; Watmough NJ; Ferguson SJ
    Nat Struct Biol; 2000 Oct; 7(10):885-8. PubMed ID: 11017198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.