BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7737094)

  • 41. Principles of DNA separation with capillary electrophoresis.
    Heller C
    Electrophoresis; 2001; 22(4):629-43. PubMed ID: 11296917
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electric field gradients and band sharpening in DNA gel electrophoresis.
    Slater GW; Noolandi J
    Electrophoresis; 1988 Oct; 9(10):643-6. PubMed ID: 3243227
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microsystem for field-amplified electrokinetic trapping preconcentration of DNA at poly(ethylene terephthalate) membranes.
    Hahn T; O'Sullivan CK; Drese KS
    Anal Chem; 2009 Apr; 81(8):2904-11. PubMed ID: 19296594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The use of gel and capillary electrophoresis to investigate some of the fundamental physical properties of DNA.
    Stellwagen N; Gelfi C; Righetti PG
    Electrophoresis; 2002 Jan; 23(2):167-75. PubMed ID: 11840519
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The propagator (retarded Green function) formalism as a new calculation method to predict the time evolution of bands in capillary electrophoresis and microchannels.
    Schoffen JR; Mandaji M; Termignoni C; Grieneisen HP; Kist TB
    Electrophoresis; 2002 Aug; 23(16):2704-9. PubMed ID: 12210175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of column length, applied voltage, gel type, and concentration on the capillary electrophoresis separation of DNA fragments and polymerase chain reaction products.
    Issaq HJ; Chan KC; Muschik GM
    Electrophoresis; 1997 Jun; 18(7):1153-8. PubMed ID: 9237572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA sequencing with pulsed-field capillary electrophoresis in poly(ethylene oxide) matrix.
    Kim Y; Yeung ES
    Electrophoresis; 1997 Dec; 18(15):2901-8. PubMed ID: 9504828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast DNA sequencing up to 1,000 bases by capillary electrophoresis using poly(N,N-dimethylacrylamide) as a separation medium.
    Song L; Liang D; Fang D; Chu B
    Electrophoresis; 2001 Jun; 22(10):1987-96. PubMed ID: 11465497
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of electric field strength for DNA sequencing in capillary gel electrophoresis.
    Luckey JA; Smith LM
    Anal Chem; 1993 Oct; 65(20):2841-50. PubMed ID: 8250264
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diffusion as a tool of measuring temperature inside a capillary.
    Musheev MU; Javaherian S; Okhonin V; Krylov SN
    Anal Chem; 2008 Sep; 80(17):6752-7. PubMed ID: 18672887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the use of the activation energy concept to investigate analyte and network deformations in entangled polymer solution capillary electrophoresis of synthetic polyelectrolytes.
    Cottet H; Gareil P
    Electrophoresis; 2001; 22(4):684-91. PubMed ID: 11296923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Band broadening in gel electrophoresis: scaling laws for the dispersion coefficient measured by FRAP.
    Tinland B; Pernodet N; Pluen A
    Biopolymers; 1998 Oct; 46(4):201-14. PubMed ID: 9715664
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diffusion constant in gel electrophoresis at high fields.
    Krawczyk MJ; Dulak J; Paściak P; Kułakowski K
    Electrophoresis; 2004 Mar; 25(6):785-9. PubMed ID: 15004836
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theory of band broadening for DNA gel electrophoresis and sequencing.
    Slater GW
    Electrophoresis; 1993; 14(1-2):1-7. PubMed ID: 8462504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Joule heating induced stream broadening in free-flow zone electrophoresis.
    Dutta D
    Electrophoresis; 2018 Mar; 39(5-6):760-769. PubMed ID: 29115696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Electrophoresis; 2005 Nov; 26(22):4333-44. PubMed ID: 16287176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The use of a new gel matrix for the separation of DNA fragments: a comparison study between slab gel electrophoresis and capillary electrophoresis.
    Siles BA; Collier GB; Reeder DJ; May WE
    Appl Theor Electrophor; 1996; 6(1):15-22. PubMed ID: 9072076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular deformation and free-solution electrophoresis of DNA-uncharged polymer conjugates at high field strengths: theoretical predictions. Part 1: hydrodynamic segregation.
    McCormick LC; Slater GW
    Electrophoresis; 2007 Feb; 28(4):674-82. PubMed ID: 17245697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.