These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 7737194)
1. Kinetic analysis of triple-helix formation by pyrimidine oligodeoxynucleotides and duplex DNA. Xodo LE Eur J Biochem; 1995 Mar; 228(3):918-26. PubMed ID: 7737194 [TBL] [Abstract][Full Text] [Related]
2. A kinetic study of triple-helix formation at a critical R x Y sequence of the murine c-Ki-ras promoter by (A,G)- and (G,T) oligonucleotides. Xodo LE; Pirulli D; Quadrifoglio F Eur J Biochem; 1997 Sep; 248(2):424-32. PubMed ID: 9346298 [TBL] [Abstract][Full Text] [Related]
3. Kinetics and thermodynamics of triple-helix formation: effects of ionic strength and mismatches. Rougée M; Faucon B; Mergny JL; Barcelo F; Giovannangeli C; Garestier T; Hélène C Biochemistry; 1992 Sep; 31(38):9269-78. PubMed ID: 1390713 [TBL] [Abstract][Full Text] [Related]
4. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes. Sugimoto N; Wu P; Hara H; Kawamoto Y Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic and kinetic studies of DNA triplex formation of an oligohomopyrimidine and a matched duplex by filter binding assay. Shindo H; Torigoe H; Sarai A Biochemistry; 1993 Aug; 32(34):8963-9. PubMed ID: 8364041 [TBL] [Abstract][Full Text] [Related]
6. A new approach to overcome potassium-mediated inhibition of triplex formation. Svinarchuk F; Cherny D; Debin A; Delain E; Malvy C Nucleic Acids Res; 1996 Oct; 24(19):3858-65. PubMed ID: 8871568 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic and kinetic effects of N3'-->P5' phosphoramidate modification on pyrimidine motif triplex DNA formation. Torigoe H Biochemistry; 2001 Jan; 40(4):1063-9. PubMed ID: 11170429 [TBL] [Abstract][Full Text] [Related]
8. Fidelity of binding of the guanidinium nucleic acid (DNG) d(Tg)4-T-azido with short strand DNA oligomers (A5G3A5, GA4G3A4G, G2A3G3A3G2, G2A2G5A2G2). A kinetic and thermodynamic study. Blaskó A; Minyat EE; Dempcy RO; Bruice TC Biochemistry; 1997 Jun; 36(25):7821-31. PubMed ID: 9201925 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
11. Promotion of triplex formation by 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification: thermodynamic and kinetic studies. Torigoe H; Obika S; Imanishi T Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1235-8. PubMed ID: 11562992 [TBL] [Abstract][Full Text] [Related]
12. 2'-O,4'-C-methylene bridged nucleic acid modification promotes pyrimidine motif triplex DNA formation at physiological pH: thermodynamic and kinetic studies. Torigoe H; Hari Y; Sekiguchi M; Obika S; Imanishi T J Biol Chem; 2001 Jan; 276(4):2354-60. PubMed ID: 11035027 [TBL] [Abstract][Full Text] [Related]
13. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex. Gondeau C; Maurizot JC; Durand M Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765 [TBL] [Abstract][Full Text] [Related]
14. 2'-O,4'-C-aminomethylene-bridged nucleic acid modification with enhancement of nuclease resistance promotes pyrimidine motif triplex nucleic acid formation at physiological pH. Torigoe H; Rahman SM; Takuma H; Sato N; Imanishi T; Obika S; Sasaki K Chemistry; 2011 Feb; 17(9):2742-51. PubMed ID: 21264967 [TBL] [Abstract][Full Text] [Related]
15. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl. Gamper HB; Kutyavin IV; Rhinehart RL; Lokhov SG; Reed MW; Meyer RB Biochemistry; 1997 Dec; 36(48):14816-26. PubMed ID: 9398203 [TBL] [Abstract][Full Text] [Related]
16. (A,G)-oligonucleotides form extraordinary stable triple helices with a critical R.Y sequence of the murine c-Ki-ras promoter and inhibit transcription in transfected NIH 3T3 cells. Alunni-Fabbroni M; Pirulli D; Manzini G; Xodo LE Biochemistry; 1996 Dec; 35(50):16361-9. PubMed ID: 8973212 [TBL] [Abstract][Full Text] [Related]
17. A molecular beacon strategy for real-time monitoring of triplex DNA formation kinetics. Antony T; Subramaniam V Antisense Nucleic Acid Drug Dev; 2002 Jun; 12(3):145-54. PubMed ID: 12162697 [TBL] [Abstract][Full Text] [Related]
18. Pyrimidine morpholino oligonucleotides form a stable triple helix in the absence of magnesium ions. Lacroix L; Arimondo PB; Takasugi M; Hélène C; Mergny JL Biochem Biophys Res Commun; 2000 Apr; 270(2):363-9. PubMed ID: 10753631 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic and kinetic effects of morpholino modification on pyrimidine motif triplex nucleic acid formation under physiological condition. Torigoe H; Sasaki K; Katayama T J Biochem; 2009 Aug; 146(2):173-83. PubMed ID: 19351708 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of T7 RNA polymerase transcription by phosphate and phosphorothioate triplex-forming oligonucleotides targeted to a R.Y site downstream from the promoter. Alunni-Fabbroni M; Manfioletti G; Manzini G; Xodo LE Eur J Biochem; 1994 Dec; 226(3):831-9. PubMed ID: 7813472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]