These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7737398)

  • 21. Coordination between the transport and the grasp components during prehension movements.
    Chieffi S; Gentilucci M
    Exp Brain Res; 1993; 94(3):471-7. PubMed ID: 8359261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Movement kinematics in prehension are affected by grasping objects of different mass.
    Eastough D; Edwards MG
    Exp Brain Res; 2007 Jan; 176(1):193-8. PubMed ID: 17072606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Movement planning and attentional control of visuospatial working memory: evidence from a grasp-to-place task.
    Spiegel MA; Koester D; Schack T
    Psychol Res; 2014 Jul; 78(4):494-505. PubMed ID: 23832553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of visual feedback of hand position in the control of manual prehension.
    Connolly JD; Goodale MA
    Exp Brain Res; 1999 Apr; 125(3):281-6. PubMed ID: 10229019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size.
    Paulignan Y; Jeannerod M; MacKenzie C; Marteniuk R
    Exp Brain Res; 1991; 87(2):407-20. PubMed ID: 1769391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of stimulus color on the control of reaching-grasping movements.
    Gentilucci M; Benuzzi F; Bertolani L; Gangitano M
    Exp Brain Res; 2001 Mar; 137(1):36-44. PubMed ID: 11310170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Movement planning in prehension: do intended actions influence the initial reach and grasp movement?
    Armbrüster C; Spijkers W
    Motor Control; 2006 Oct; 10(4):311-29. PubMed ID: 17293615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time to contact and the control of manual prehension.
    Watson MK; Jakobson LS
    Exp Brain Res; 1997 Nov; 117(2):273-80. PubMed ID: 9419073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hand preshaping in Parkinson's disease: effects of visual feedback and medication state.
    Schettino LF; Adamovich SV; Hening W; Tunik E; Sage J; Poizner H
    Exp Brain Res; 2006 Jan; 168(1-2):186-202. PubMed ID: 16041510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping.
    Fukui T; Inui T
    Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of object shape and visual feedback on hand configuration during grasping.
    Schettino LF; Adamovich SV; Poizner H
    Exp Brain Res; 2003 Jul; 151(2):158-66. PubMed ID: 12783144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition in movement plan competition: reach trajectories curve away from remembered and task-irrelevant present but not from task-irrelevant past visual stimuli.
    Moehler T; Fiehler K
    Exp Brain Res; 2017 Nov; 235(11):3251-3260. PubMed ID: 28765992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different coupling for the reach and grasp components in bimanual prehension movements.
    Dohle C; Ostermann G; Hefter H; Freund HJ
    Neuroreport; 2000 Nov; 11(17):3787-91. PubMed ID: 11117492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. No role for motor affordances in visual working memory.
    Pecher D
    J Exp Psychol Learn Mem Cogn; 2013 Jan; 39(1):2-13. PubMed ID: 22612171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of vision in aperture closure control during reach-to-grasp movements.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.
    Grubert A; Eimer M
    Brain Res; 2015 Nov; 1626():258-66. PubMed ID: 25445999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pointing in 3D space to remembered targets. I. Kinesthetic versus visual target presentation.
    Adamovich SV; Berkinblit MB; Fookson O; Poizner H
    J Neurophysiol; 1998 Jun; 79(6):2833-46. PubMed ID: 9636090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.