BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7737469)

  • 1. Bradyrhizobium japonicum nodulation genetics.
    Stacey G
    FEMS Microbiol Lett; 1995 Mar; 127(1-2):1-9. PubMed ID: 7737469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals.
    López-Lara IM; Blok-Tip L; Quinto C; Garcia ML; Stacey G; Bloemberg GV; Lamers GE; Lugtenberg BJ; Thomas-Oates JE; Spaink HP
    Mol Microbiol; 1996 Jul; 21(2):397-408. PubMed ID: 8858593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum.
    Sanjuan J; Carlson RW; Spaink HP; Bhat UR; Barbour WM; Glushka J; Stacey G
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8789-93. PubMed ID: 1528893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum.
    Stacey G; Luka S; Sanjuan J; Banfalvi Z; Nieuwkoop AJ; Chun JY; Forsberg LS; Carlson R
    J Bacteriol; 1994 Feb; 176(3):620-33. PubMed ID: 8300517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback regulation of the Bradyrhizobium japonicum nodulation genes.
    Loh JT; Stacey G
    Mol Microbiol; 2001 Sep; 41(6):1357-64. PubMed ID: 11580840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bradyrhizobium (Arachis) sp. strain NC92 contains two nodD genes involved in the repression of nodA and a nolA gene required for the efficient nodulation of host plants.
    Gillette WK; Elkan GH
    J Bacteriol; 1996 May; 178(10):2757-66. PubMed ID: 8631662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. nolMNO genes of Bradyrhizobium japonicum are co-transcribed with nodYABCSUIJ, and nolO is involved in the synthesis of the lipo-oligosaccharide nodulation signals.
    Luka S; Sanjuan J; Carlson RW; Stacey G
    J Biol Chem; 1993 Dec; 268(36):27053-9. PubMed ID: 8262943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of the Bradyrhizobium japonicum nodD1 promoter: a repeated structure for the nod box.
    Wang SP; Stacey G
    J Bacteriol; 1991 Jun; 173(11):3356-65. PubMed ID: 1675210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum.
    Loh J; Garcia M; Stacey G
    J Bacteriol; 1997 May; 179(9):3013-20. PubMed ID: 9139921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110.
    Göttfert M; Holzhäuser D; Bäni D; Hennecke H
    Mol Plant Microbe Interact; 1992; 5(3):257-65. PubMed ID: 1421512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizobial lipo-oligosaccharide nodulation factors: multidimensional chromatographic analysis of symbiotic signals involved in the development of legume root nodules.
    Price NP; Carlson RW
    Glycobiology; 1995 Mar; 5(2):233-42. PubMed ID: 7780198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel response-regulator is able to suppress the nodulation defect of a Bradyrhizobium japonicum nodW mutant.
    Grob P; Michel P; Hennecke H; Göttfert M
    Mol Gen Genet; 1993 Dec; 241(5-6):531-41. PubMed ID: 8264528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria.
    Dobert RC; Breil BT; Triplett EW
    Mol Plant Microbe Interact; 1994; 7(5):564-72. PubMed ID: 7949325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum.
    Göttfert M; Grob P; Hennecke H
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2680-4. PubMed ID: 2320582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic Bradyrhizobium Sp. strain ORS285 synthesizes 2-O-methylfucosylated lipochitooligosaccharides for nod gene-dependent interaction with Aeschynomene plants.
    Renier A; Maillet F; Fardoux J; Poinsot V; Giraud E; Nouwen N
    Mol Plant Microbe Interact; 2011 Dec; 24(12):1440-7. PubMed ID: 21864045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of the Bradyrhizobium japonicum common nod genes and further nod box-linked genomic DNA regions.
    Göttfert M; Lamb JW; Gasser R; Semenza J; Hennecke H
    Mol Gen Genet; 1989 Feb; 215(3):407-15. PubMed ID: 2710106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rhizobium, Bradyrhizobium, and Azorhizobium NodC proteins are homologous to yeast chitin synthases.
    Debellé F; Rosenberg C; Dénarié J
    Mol Plant Microbe Interact; 1992; 5(5):443-6. PubMed ID: 1472721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberrant nodulation response of Vigna umbellata to a Bradyrhizobium japonicum NodZ mutant and nodulation signals.
    Cohn J; Stokkermans T; Kolli VK; Day RB; Dunlap J; Carlson R; Hughes D; Peters NK; Stacey G
    Mol Plant Microbe Interact; 1999 Sep; 12(9):766-73. PubMed ID: 10494629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of nodS and nodU, two inducible genes inserted between the Bradyrhizobium japonicum nodYABC and nodIJ genes.
    Göttfert M; Hitz S; Hennecke H
    Mol Plant Microbe Interact; 1990; 3(5):308-16. PubMed ID: 2134855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular basis of the host specificity of the Rhizobium bacteria.
    Spaink HP
    Antonie Van Leeuwenhoek; 1994; 65(2):81-98. PubMed ID: 7718036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.