BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7737889)

  • 1. An assessment of the relationships among species of Camelidae by satellite DNA comparisons.
    Vidal-Rioja L; Zambelli A; Semorile L
    Hereditas; 1994; 121(3):283-90. PubMed ID: 7737889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA composition in South American camelids. I. Characterization and in situ hybridization of satellite DNA fractions.
    Vidal-Rioja L; Semorile L; Bianchi NO; Padrón J
    Genetica; 1987 Jun; 72(2):137-46. PubMed ID: 3505882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis reveals the wild ancestors of the llama and the alpaca.
    Kadwell M; Fernandez M; Stanley HF; Baldi R; Wheeler JC; Rosadio R; Bruford MW
    Proc Biol Sci; 2001 Dec; 268(1485):2575-84. PubMed ID: 11749713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restriction site patterns in the ribosomal DNA of camelidae.
    Semorile LC; Crisci JV; Vidal-Rioja L
    Genetica; 1994; 92(2):115-22. PubMed ID: 7958935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Y-chromosome and mtDNA variation confirms independent domestications and directional hybridization in South American camelids.
    Marín JC; Romero K; Rivera R; Johnson WE; González BA
    Anim Genet; 2017 Oct; 48(5):591-595. PubMed ID: 28699276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphofunctional structure of the lingual papillae in three species of South American Camelids: Alpaca, guanaco, and llama.
    Erdoğan S; Villar Arias S; Pérez W
    Microsc Res Tech; 2016 Feb; 79(2):61-71. PubMed ID: 26572928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete mitochondrial DNA sequence of the guanaco (Lama guanicoe): comparative analysis with the vicuña (Vicugna vicugna) genome.
    Di Rocco F; Zambelli A; Maté L; Vidal-Rioja L
    Genetica; 2010 Aug; 138(8):813-8. PubMed ID: 20524143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. South American camelid illegal traffic detection by means of molecular markers.
    Di Rocco F; Posik DM; Ripoli MV; Díaz S; Maté ML; Giovambattista G; Vidal-Rioja L
    Leg Med (Tokyo); 2011 Nov; 13(6):289-92. PubMed ID: 21982877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ag-NOR staining and in situ hybridization of rDNA in the chromosomes of the South American camelids.
    Vidal-Rioja L; Larramendy ML; Semorile L
    Genetica; 1989; 79(3):215-22. PubMed ID: 2482825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of enamel on the incisors of the llama (Lama glama) and alpaca (Lama pacos).
    Riviere HL; Gentz EJ; Timm KI
    Anat Rec; 1997 Dec; 249(4):441-8. PubMed ID: 9415451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forensic identification of the keratin fibers of South American camelids by ambient ionization mass spectrometry: Vicuña, alpaca and guanaco.
    Price E; Larrabure D; Gonzales B; McClure P; Espinoza E
    Rapid Commun Mass Spectrom; 2020 Dec; 34(23):e8916. PubMed ID: 32770752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution of the family Camelidae: a mitochondrial DNA study.
    Stanley HF; Kadwell M; Wheeler JC
    Proc Biol Sci; 1994 Apr; 256(1345):1-6. PubMed ID: 8008753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing genetic diversity and demographic history in co-distributed wild South American camelids.
    Casey CS; Orozco-terWengel P; Yaya K; Kadwell M; Fernández M; Marín JC; Rosadio R; Maturrano L; Hoces D; Hu Y; Wheeler JC; Bruford MW
    Heredity (Edinb); 2018 Oct; 121(4):387-400. PubMed ID: 30061581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of mitochondrial DNA in Bolivian llama, alpaca and vicuna populations: a contribution to the phylogeny of the South American camelids.
    Barreta J; Gutiérrez-Gil B; Iñiguez V; Saavedra V; Chiri R; Latorre E; Arranz JJ
    Anim Genet; 2013 Apr; 44(2):158-68. PubMed ID: 22640259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic analysis of the domestication and post-Spanish conquest evolution of the llama and alpaca.
    Fan R; Gu Z; Guang X; Marín JC; Varas V; González BA; Wheeler JC; Hu Y; Li E; Sun X; Yang X; Zhang C; Gao W; He J; Munch K; Corbett-Detig R; Barbato M; Pan S; Zhan X; Bruford MW; Dong C
    Genome Biol; 2020 Jul; 21(1):159. PubMed ID: 32616020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of allosteric effectors with alpha-globin chains and high altitude respiration of mammals. The primary structure of two tylopoda hemoglobins with high oxygen affinity: vicuna (Lama vicugna) and alpaca (Lama pacos).
    Kleinschmidt T; März J; Jürgens KD; Braunitzer G
    Biol Chem Hoppe Seyler; 1986 Feb; 367(2):153-60. PubMed ID: 3964445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Camelids: new players in the international animal production context.
    Zarrin M; Riveros JL; Ahmadpour A; de Almeida AM; Konuspayeva G; Vargas-Bello-Pérez E; Faye B; Hernández-Castellano LE
    Trop Anim Health Prod; 2020 May; 52(3):903-913. PubMed ID: 31898022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Untangling the fibre ball: Proteomic characterization of South American camelid hair fibres by untargeted multivariate analysis and molecular networking.
    Azémard C; Dufour E; Zazzo A; Wheeler JC; Goepfert N; Marie A; Zirah S
    J Proteomics; 2021 Jan; 231():104040. PubMed ID: 33152504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide scan for runs of homozygosity in South American Camelids.
    Pallotti S; Picciolini M; Antonini M; Renieri C; Napolioni V
    BMC Genomics; 2023 Aug; 24(1):470. PubMed ID: 37605116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence of satellite I and II DNA from alpaca (Lama pacos) genome.
    Sałuda-Gorgul A; Jaworski J; Greger J
    Acta Biochim Pol; 1990; 37(2):283-97. PubMed ID: 2072986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.