BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 7737974)

  • 1. The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates.
    Ziegelhoffer T; Lopez-Buesa P; Craig EA
    J Biol Chem; 1995 May; 270(18):10412-9. PubMed ID: 7737974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of Hsp70 subfamilies by the eukaryotic DnaJ homologue YDJ1.
    Cyr DM; Douglas MG
    J Biol Chem; 1994 Apr; 269(13):9798-804. PubMed ID: 8144572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER.
    McClellan AJ; Endres JB; Vogel JP; Palazzi D; Rose MD; Brodsky JL
    Mol Biol Cell; 1998 Dec; 9(12):3533-45. PubMed ID: 9843586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of the ATP-binding pocket of SSA1 indicates that a functional interaction between Ssa1p and Ydj1p is required for post-translational translocation into the yeast endoplasmic reticulum.
    McClellan AJ; Brodsky JL
    Genetics; 2000 Oct; 156(2):501-12. PubMed ID: 11014801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p.
    Kabani M; Beckerich JM; Brodsky JL
    Mol Cell Biol; 2002 Jul; 22(13):4677-89. PubMed ID: 12052876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates.
    Russell R; Wali Karzai A; Mehl AF; McMacken R
    Biochemistry; 1999 Mar; 38(13):4165-76. PubMed ID: 10194333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the endoplasmic reticulum.
    Ngosuwan J; Wang NM; Fung KL; Chirico WJ
    J Biol Chem; 2003 Feb; 278(9):7034-42. PubMed ID: 12493732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators.
    Levy EJ; McCarty J; Bukau B; Chirico WJ
    FEBS Lett; 1995 Jul; 368(3):435-40. PubMed ID: 7635193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae.
    Oka M; Nakai M; Endo T; Lim CR; Kimata Y; Kohno K
    J Biol Chem; 1998 Nov; 273(45):29727-37. PubMed ID: 9792686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation.
    Cyr DM
    FEBS Lett; 1995 Feb; 359(2-3):129-32. PubMed ID: 7867784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real time kinetics of the DnaK/DnaJ/GrpE molecular chaperone machine action.
    Banecki B; Zylicz M
    J Biol Chem; 1996 Mar; 271(11):6137-43. PubMed ID: 8626401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of DnaK chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE.
    Siegenthaler RK; Christen P
    J Biol Chem; 2006 Nov; 281(45):34448-56. PubMed ID: 16940296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains.
    Davis JE; Voisine C; Craig EA
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9269-76. PubMed ID: 10430932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins.
    Jordan R; McMacken R
    J Biol Chem; 1995 Mar; 270(9):4563-9. PubMed ID: 7876226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding.
    Tsai J; Douglas MG
    J Biol Chem; 1996 Apr; 271(16):9347-54. PubMed ID: 8621599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Ethylmaleimide-modified Hsp70 inhibits protein folding.
    Hermawan A; Chirico WJ
    Arch Biochem Biophys; 1999 Sep; 369(1):157-62. PubMed ID: 10462452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40.
    Edkins AL; Ludewig MH; Blatch GL
    Int J Biochem Cell Biol; 2004 Aug; 36(8):1585-98. PubMed ID: 15147737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent effects of ATP on the binding of the DnaK and DnaJ chaperones to each other, or to their various native and denatured protein substrates.
    Wawrzynów A; Zylicz M
    J Biol Chem; 1995 Aug; 270(33):19300-6. PubMed ID: 7642605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.