These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7737985)

  • 1. Active site residues of human brain hexokinase as studied by site-specific mutagenesis.
    Zeng C; Fromm HJ
    J Biol Chem; 1995 May; 270(18):10509-13. PubMed ID: 7737985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis.
    Zeng C; Aleshin AE; Hardie JB; Harrison RW; Fromm HJ
    Biochemistry; 1996 Oct; 35(40):13157-64. PubMed ID: 8855953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of glycine residues in the ATP binding site of human brain hexokinase.
    Zeng C; Aleshin AE; Chen G; Honzatko RB; Fromm HJ
    J Biol Chem; 1998 Jan; 273(2):700-4. PubMed ID: 9422720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a phosphate regulatory site and a low affinity binding site for glucose 6-phosphate in the N-terminal half of human brain hexokinase.
    Fang TY; Alechina O; Aleshin AE; Fromm HJ; Honzatko RB
    J Biol Chem; 1998 Jul; 273(31):19548-53. PubMed ID: 9677378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose phosphorylation. Site-directed mutations which impair the catalytic function of hexokinase.
    Arora KK; Filburn CR; Pedersen PL
    J Biol Chem; 1991 Mar; 266(9):5359-62. PubMed ID: 2005085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human beta-cell glucokinase. Dual role of Ser-151 in catalysis and hexose affinity.
    Xu LZ; Harrison RW; Weber IT; Pilkis SJ
    J Biol Chem; 1995 Apr; 270(17):9939-46. PubMed ID: 7730377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate.
    Aleshin AE; Zeng C; Bourenkov GP; Bartunik HD; Fromm HJ; Honzatko RB
    Structure; 1998 Jan; 6(1):39-50. PubMed ID: 9493266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure/function relationships in hexokinase. Site-directed mutational analyses and characterization of overexpressed fragments implicate different functions for the N- and C-terminal halves of the enzyme.
    Arora KK; Filburn CR; Pedersen PL
    J Biol Chem; 1993 Aug; 268(24):18259-66. PubMed ID: 8349702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the putative GTP-binding site residues of Escherichia coli adenylosuccinate synthetase by site-directed mutagenesis.
    Kang C; Fromm HJ
    Arch Biochem Biophys; 1994 May; 310(2):475-80. PubMed ID: 8179335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric regulation of type I hexokinase: A site-directed mutational study indicating location of the functional glucose 6-phosphate binding site in the N-terminal half of the enzyme.
    Sebastian S; Wilson JE; Mulichak A; Garavito RM
    Arch Biochem Biophys; 1999 Feb; 362(2):203-10. PubMed ID: 9989928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose 6-phosphate release of wild-type and mutant human brain hexokinases from mitochondria.
    Skaff DA; Kim CS; Tsai HJ; Honzatko RB; Fromm HJ
    J Biol Chem; 2005 Nov; 280(46):38403-9. PubMed ID: 16166083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of enzyme function of the type II hexokinase C-terminal half on replacements of restricted regions by corresponding regions of glucokinase.
    Kogure K; Yamamoto K; Majima E; Shinohara Y; Yamashita K; Terada H
    J Biol Chem; 1996 Jun; 271(25):15230-6. PubMed ID: 8662949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate.
    Aleshin AE; Zeng C; Bartunik HD; Fromm HJ; Honzatko RB
    J Mol Biol; 1998 Sep; 282(2):345-57. PubMed ID: 9735292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves.
    Ardehali H; Yano Y; Printz RL; Koch S; Whitesell RR; May JM; Granner DK
    J Biol Chem; 1996 Jan; 271(4):1849-52. PubMed ID: 8567628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of non-catalytic ATP to human hexokinase I highlights the structural components for enzyme-membrane association control.
    Rosano C; Sabini E; Rizzi M; Deriu D; Murshudov G; Bianchi M; Serafini G; Magnani M; Bolognesi M
    Structure; 1999 Nov; 7(11):1427-37. PubMed ID: 10574795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates.
    Magnani M; Bianchi M; Casabianca A; Stocchi V; Daniele A; Altruda F; Ferrone M; Silengo L
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):193-9. PubMed ID: 1637300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonaggregating mutant of recombinant human hexokinase I exhibits wild-type kinetics and rod-like conformations in solution.
    Aleshin AE; Malfois M; Liu X; Kim CS; Fromm HJ; Honzatko RB; Koch MH; Svergun DI
    Biochemistry; 1999 Jun; 38(26):8359-66. PubMed ID: 10387081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific mutations of conserved residues in the phosphate-binding loop of the Arabidopsis UMP/CMP kinase alter ATP and UMP binding.
    Zhou L; Thornburg R
    Arch Biochem Biophys; 1998 Oct; 358(2):297-302. PubMed ID: 9784243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.