These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7738058)

  • 1. Comment on 'The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior'.
    McCutchen CW
    J Biomech; 1995 Apr; 28(4):479, 481. PubMed ID: 7738058
    [No Abstract]   [Full Text] [Related]  

  • 2. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic behavior of a biphasic cartilage model under cyclic compressive loading.
    Suh JK; Li Z; Woo SL
    J Biomech; 1995 Apr; 28(4):357-64. PubMed ID: 7738045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression.
    DiSilvestro MR; Suh JK
    J Biomech; 2001 Apr; 34(4):519-25. PubMed ID: 11266676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.
    Suh JK; Bai S
    J Biomech Eng; 1998 Apr; 120(2):195-201. PubMed ID: 10412380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates.
    DiSilvestro MR; Zhu Q; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments.
    Mow VC; Kuei SC; Lai WM; Armstrong CG
    J Biomech Eng; 1980 Feb; 102(1):73-84. PubMed ID: 7382457
    [No Abstract]   [Full Text] [Related]  

  • 11. Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration.
    DiSilvestro MR; Suh JK
    Ann Biomed Eng; 2002 Jun; 30(6):792-800. PubMed ID: 12220079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage.
    Haider MA; Schugart RC
    J Biomech; 2006; 39(1):177-83. PubMed ID: 16271602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage.
    Holmes MH; Lai WM; Mow VC
    J Biomech Eng; 1985 Aug; 107(3):206-18. PubMed ID: 4046561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation.
    McGann ME; Bonitsky CM; Ovaert TC; Wagner DR
    J Mech Behav Biomed Mater; 2014 Jun; 34():264-72. PubMed ID: 24631625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I--Simultaneous prediction of reaction force and lateral displacement.
    DiSilvestro MR; Zhu Q; Wong M; Jurvelin JS; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):191-7. PubMed ID: 11340881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-linear viscoelastic properties of normal articular cartilage.
    Woo SL; Simon BR; Kuei SC; Akeson WH
    J Biomech Eng; 1980 May; 102(2):85-90. PubMed ID: 7412243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage.
    Stuebner M; Haider MA
    J Biomech; 2010 Jun; 43(9):1835-9. PubMed ID: 20211471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visco-elastic behavior of articular cartilage under applied magnetic field and strain-dependent permeability.
    Ali U; Siddique JI
    Comput Methods Biomech Biomed Engin; 2020 Jul; 23(9):524-535. PubMed ID: 32379552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the fundamental fluid transport mechanisms through normal and pathological articular cartilage during function - II. The analysis, solution and conclusions.
    Torzilli PA; Mow VC
    J Biomech; 1976; 9(9):587-606. PubMed ID: 965425
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.