BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7738068)

  • 1. Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces.
    Drumheller PD; Hubbell JA
    J Biomed Mater Res; 1995 Feb; 29(2):207-15. PubMed ID: 7738068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates.
    Drumheller PD; Hubbell JA
    Anal Biochem; 1994 Nov; 222(2):380-8. PubMed ID: 7864362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of protein adsorption on functionalized electrospun fibers.
    Grafahrend D; Calvet JL; Klinkhammer K; Salber J; Dalton PD; Möller M; Klee D
    Biotechnol Bioeng; 2008 Oct; 101(3):609-21. PubMed ID: 18461606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Issues of ligand accessibility and mobility in initial cell attachment.
    Thid D; Bally M; Holm K; Chessari S; Tosatti S; Textor M; Gold J
    Langmuir; 2007 Nov; 23(23):11693-704. PubMed ID: 17918863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide.
    Pei J; Hall H; Spencer ND
    Biomaterials; 2011 Dec; 32(34):8968-78. PubMed ID: 21872325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
    Kutty JK; Cho E; Soo Lee J; Vyavahare NR; Webb K
    Biomaterials; 2007 Nov; 28(33):4928-38. PubMed ID: 17720239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ethylene glycol)-grafted poly(propylene fumarate) networks and parabolic dependence of MC3T3 cell behavior on the network composition.
    Cai L; Wang K; Wang S
    Biomaterials; 2010 Jun; 31(16):4457-66. PubMed ID: 20202682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional poly(ethylene glycol) semi-interpenetrating polymer networks as highly selective adhesive substrates for bioadhesive peptide grafting.
    Drumheller PD; Elbert DL; Hubbell JA
    Biotechnol Bioeng; 1994 Apr; 43(8):772-80. PubMed ID: 18615801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility.
    Balakrishnan B; Kumar DS; Yoshida Y; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(17):3495-502. PubMed ID: 15621239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling.
    Ito Y; Hasuda H; Sakuragi M; Tsuzuki S
    Acta Biomater; 2007 Nov; 3(6):1024-32. PubMed ID: 17644500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles.
    Nolan CM; Reyes CD; Debord JD; García AJ; Lyon LA
    Biomacromolecules; 2005; 6(4):2032-9. PubMed ID: 16004442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro.
    Barber TA; Golledge SL; Castner DG; Healy KE
    J Biomed Mater Res A; 2003 Jan; 64(1):38-47. PubMed ID: 12483694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces.
    Heyes CD; Groll J; Möller M; Nienhaus GU
    Mol Biosyst; 2007 Jun; 3(6):419-30. PubMed ID: 17533455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s.
    J Yeh PY; Kainthan RK; Zou Y; Chiao M; Kizhakkedathu JN
    Langmuir; 2008 May; 24(9):4907-16. PubMed ID: 18361531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.
    Hsu SH; Tang CM; Lin CC
    Biomaterials; 2004 Nov; 25(25):5593-601. PubMed ID: 15159075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium pentoxide substrates using time-of-flight secondary ion mass spectrometry and multivariate analysis.
    Wagner MS; Pasche S; Castner DG; Textor M
    Anal Chem; 2004 Mar; 76(5):1483-92. PubMed ID: 14987107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces.
    Bergström K; Holmberg K; Safranj A; Hoffman AS; Edgell MJ; Kozlowski A; Hovanes BA; Harris JM
    J Biomed Mater Res; 1992 Jun; 26(6):779-90. PubMed ID: 1527100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein adhesion on silicon-supported hyperbranched poly(ethylene glycol) and poly(allylamine) thin films.
    Dyer MA; Ainslie KM; Pishko MV
    Langmuir; 2007 Jun; 23(13):7018-23. PubMed ID: 17506587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.