BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 7738689)

  • 1. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-transferrin iron uptake by trophoblast cells in culture. Significance of a NADH-dependent ferrireductase.
    Verrijt CE; Kroos MJ; Huijskes-Heins MI; van Eijk HG; van Dijk JP
    Placenta; 1998 Sep; 19(7):525-30. PubMed ID: 9778126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron.
    Lane DJ; Robinson SR; Czerwinska H; Bishop GM; Lawen A
    Biochem J; 2010 Nov; 432(1):123-32. PubMed ID: 20819077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4: Effects of ascorbic acid, pH, and a Fe(II) chelating agent.
    Zhu L; Glahn RP; Yeung CK; Miller DD
    J Agric Food Chem; 2006 Oct; 54(20):7924-8. PubMed ID: 17002471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ferric reductase activity is found in brush border membrane vesicles isolated from Caco-2 cells.
    Ekmekcioglu C; Feyertag J; Marktl W
    J Nutr; 1996 Sep; 126(9):2209-17. PubMed ID: 8814209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid decreases Fe(II) and Fe(III) retention but increases Fe(III) transepithelial transfer by Caco-2 cells.
    Bergqvist SW; Sandberg AS; Andlid T; Wessling-Resnick M
    J Agric Food Chem; 2005 Aug; 53(17):6919-23. PubMed ID: 16104821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the uptake of iron from Fe(II) ascorbate and Fe(III) citrate by IEC-6 cells and the involvement of ferroportin/IREG-1/MTP-1/SLC40A1.
    Thomas C; Oates PS
    Pflugers Arch; 2004 Jul; 448(4):431-7. PubMed ID: 15114483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferric iron reduction by Cryptococcus neoformans.
    Nyhus KJ; Wilborn AT; Jacobson ES
    Infect Immun; 1997 Feb; 65(2):434-8. PubMed ID: 9009293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbate offsets the inhibitory effect of inositol phosphates on iron uptake and transport by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    Proc Soc Exp Biol Med; 1995 Oct; 210(1):50-6. PubMed ID: 7675798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.
    Jordan I; Kaplan J
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):875-9. PubMed ID: 7945215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of intestinal brush border iron transport.
    Simpson RJ; Raja KB; Peters TJ
    Adv Exp Med Biol; 1989; 249():27-34. PubMed ID: 2728980
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of Fe2+ and Fe3+ transport by iron-loaded cardiac myocytes.
    Parkes JG; Olivieri NF; Templeton DM
    Toxicology; 1997 Feb; 117(2-3):141-51. PubMed ID: 9057893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron.
    Randell EW; Parkes JG; Olivieri NF; Templeton DM
    J Biol Chem; 1994 Jun; 269(23):16046-53. PubMed ID: 8206903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells.
    Kim EY; Ham SK; Bradke D; Ma Q; Han O
    J Nutr; 2011 May; 141(5):828-34. PubMed ID: 21430251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of copper depletion on iron uptake mediated by SFT, a stimulator of Fe transport.
    Yu J; Wessling-Resnick M
    J Biol Chem; 1998 Mar; 273(12):6909-15. PubMed ID: 9506995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of redox systems on Fe3+ uptake by transformed human intestinal epithelial (Caco-2) cells.
    Núñez MT; Alvarez X; Smith M; Tapia V; Glass J
    Am J Physiol; 1994 Dec; 267(6 Pt 1):C1582-8. PubMed ID: 7810599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter.
    Velayudhan J; Hughes NJ; McColm AA; Bagshaw J; Clayton CL; Andrews SC; Kelly DJ
    Mol Microbiol; 2000 Jul; 37(2):274-86. PubMed ID: 10931324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of ascorbic acid in transferrin-independent reduction and uptake of iron by U-937 cells.
    May JM; Qu ZC; Mendiratta S
    Biochem Pharmacol; 1999 Jun; 57(11):1275-82. PubMed ID: 10230771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron regulates the uptake of ascorbic acid and the expression of sodium-dependent vitamin C transporter 1 (SVCT1) in human intestinal Caco-2 cells.
    Scheers NM; Sandberg AS
    Br J Nutr; 2011 Jun; 105(12):1734-40. PubMed ID: 21418708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae.
    Hassett R; Kosman DJ
    J Biol Chem; 1995 Jan; 270(1):128-34. PubMed ID: 7814363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.