These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7738825)

  • 1. Development of stiffness precedes cross-bridge attachment during the early tension rise in single frog muscle fibres.
    Bagni MA; Cecchi G; Colomo F; Garzella P
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):273-8. PubMed ID: 7738825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detachment of low-force bridges contributes to the rapid tension transients of skinned rabbit skeletal muscle fibres.
    Seow CY; Shroff SG; Ford LE
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):149-64. PubMed ID: 9175000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force responses to fast ramp stretches in stimulated frog skeletal muscle fibres.
    Bagni MA; Cecchi G; Cecchini E; Colombini B; Colomo F
    J Muscle Res Cell Motil; 1998 Jan; 19(1):33-42. PubMed ID: 9477375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-cross-bridge calcium-dependent stiffness in frog muscle fibers.
    Bagni MA; Colombini B; Geiger P; Berlinguer Palmini R; Cecchi G
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1353-7. PubMed ID: 14749216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of 2,3-butanedione monoxime (BDM) on the force-velocity relation in single muscle fibres of the frog.
    Sun YB; Lou F; Edman KA
    Acta Physiol Scand; 1995 Apr; 153(4):325-34. PubMed ID: 7618479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcomere tension-stiffness relation during the tetanus rise in single frog muscle fibres.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):469-76. PubMed ID: 10555065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of frog muscle fibres at rest and during twitch contraction.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    J Electromyogr Kinesiol; 1999 Apr; 9(2):77-86. PubMed ID: 10098708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle.
    Campbell KS; Lakie M
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):941-62. PubMed ID: 9660904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossbridge viscosity in activated frog muscle fibres.
    Cecchi G; Bagni MA; Cecchini E; Colombini B; Colomo F
    Biophys Chem; 1997 Oct; 68(1-3):1-8. PubMed ID: 9468605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM.
    Rassier DE; Herzog W
    J Appl Physiol (1985); 2004 Oct; 97(4):1395-400. PubMed ID: 15194676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 2,3-butanedione monoxime on excitation-contraction coupling in frog twitch fibres.
    De Armas R; González S; Brum G; Pizarro G
    J Muscle Res Cell Motil; 1998 Nov; 19(8):961-77. PubMed ID: 10047995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple actions of 2,3-butanedione monoxime on contractile activation in frog twitch fibres.
    Hui CS; Maylie J
    J Physiol; 1991 Oct; 442():527-49. PubMed ID: 1798041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transfer during stress relaxation of contracting frog muscle fibres.
    Mantovani M; Heglund NC; Cavagna GA
    J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contractile response during steady lengthening of stimulated frog muscle fibres.
    Lombardi V; Piazzesi G
    J Physiol; 1990 Dec; 431():141-71. PubMed ID: 2100305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of hypertonicity on force generation in tetanized single fibres from frog skeletal muscle.
    Piazzesi G; Linari M; Lombardi V
    J Physiol; 1994 May; 476(3):531-46. PubMed ID: 8057258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-bridge detachment and attachment following a step stretch imposed on active single frog muscle fibres.
    Piazzesi G; Linari M; Reconditi M; Vanzi F; Lombardi V
    J Physiol; 1997 Jan; 498 ( Pt 1)(Pt 1):3-15. PubMed ID: 9023764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force enhancement and relaxation rates after stretch of activated muscle fibres.
    Rassier DE; Herzog W
    Proc Biol Sci; 2005 Mar; 272(1562):475-80. PubMed ID: 15799942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The force bearing capacity of frog muscle fibres during stretch: its relation to sarcomere length and fibre width.
    Edman KA
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):515-26. PubMed ID: 10457067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the cross-bridge stiffness proportional to tension during muscle fiber activation?
    Colombini B; Nocella M; Bagni MA; Griffiths PJ; Cecchi G
    Biophys J; 2010 Jun; 98(11):2582-90. PubMed ID: 20513402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.