These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 7739219)
1. Models of the liver pentose cycle. Rognstad R J Theor Biol; 1995 Mar; 173(2):195-206. PubMed ID: 7739219 [TBL] [Abstract][Full Text] [Related]
2. Evidence that aldolase and D-arabinose 5-phosphate are components of pentose pathway reactions in liver in vitro. Bleakley PA; Arora KK; Williams JF Biochem Int; 1984 Apr; 8(4):491-500. PubMed ID: 6541043 [TBL] [Abstract][Full Text] [Related]
3. The game of the pentose phosphate cycle: a mathematical approach to study the optimization in design of metabolic pathways during evolution. Meléndez-Hevia E Biomed Biochim Acta; 1990; 49(8-9):903-16. PubMed ID: 2082930 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of the non-oxidative segment of the pentose cycle in the liver. Rognstad R; Katz J Biochem Biophys Res Commun; 1974 Nov; 61(2):774-80. PubMed ID: 4455245 [No Abstract] [Full Text] [Related]
5. Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Schaub J; Mauch K; Reuss M Biotechnol Bioeng; 2008 Apr; 99(5):1170-85. PubMed ID: 17972325 [TBL] [Abstract][Full Text] [Related]
6. Further evidence for the classical pentose phosphate cycle in the liver. Rognstad R; Wals P; Katz J Biochem J; 1982 Dec; 208(3):851-5. PubMed ID: 6219667 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. Neermann J; Wagner R J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765 [TBL] [Abstract][Full Text] [Related]
8. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. Kleijn RJ; van Winden WA; van Gulik WM; Heijnen JJ FEBS J; 2005 Oct; 272(19):4970-82. PubMed ID: 16176270 [TBL] [Abstract][Full Text] [Related]
9. Profiling of dynamic changes in hypermetabolic livers. Lee K; Berthiaume F; Stephanopoulos GN; Yarmush ML Biotechnol Bioeng; 2003 Aug; 83(4):400-15. PubMed ID: 12800135 [TBL] [Abstract][Full Text] [Related]
10. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation. van Winden WA; van Gulik WM; Schipper D; Verheijen PJ; Krabben P; Vinke JL; Heijnen JJ Biotechnol Bioeng; 2003 Jul; 83(1):75-92. PubMed ID: 12740935 [TBL] [Abstract][Full Text] [Related]
12. An important role for pentose cycle in the synthesis of citrulline and proline from glutamine in porcine enterocytes. Wu G Arch Biochem Biophys; 1996 Dec; 336(2):224-30. PubMed ID: 8954569 [TBL] [Abstract][Full Text] [Related]
13. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells. Miccheli A; Tomassini A; Puccetti C; Valerio M; Peluso G; Tuccillo F; Calvani M; Manetti C; Conti F Biochimie; 2006 May; 88(5):437-48. PubMed ID: 16359766 [TBL] [Abstract][Full Text] [Related]
14. Isotopic estimation of the hepatic glucose balance in vivo. Rognstad R J Theor Biol; 1994 May; 168(2):161-73. PubMed ID: 8022196 [TBL] [Abstract][Full Text] [Related]
15. A computer model of gluconeogenesis and lipid metabolism in the perfused liver. Chalhoub E; Hanson RW; Belovich JM Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1676-86. PubMed ID: 17911349 [TBL] [Abstract][Full Text] [Related]
16. Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Yang TH; Heinzle E; Wittmann C Comput Biol Chem; 2005 Apr; 29(2):121-33. PubMed ID: 15833440 [TBL] [Abstract][Full Text] [Related]
17. [Pentose cycle enzymatic activity in the liver of rats with chronic chloroprene toxicosis and the role of vitamin E in this process]. Semerdzhian LV; Mkhitarian VG Zh Eksp Klin Med; 1976; 16(5):3-10. PubMed ID: 1023705 [No Abstract] [Full Text] [Related]
18. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells. Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431 [TBL] [Abstract][Full Text] [Related]
19. A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Shetty K; Wahlqvist ML Asia Pac J Clin Nutr; 2004; 13(1):1-24. PubMed ID: 15003910 [TBL] [Abstract][Full Text] [Related]
20. A data integration approach for cell cycle analysis oriented to model simulation in systems biology. Alfieri R; Merelli I; Mosca E; Milanesi L BMC Syst Biol; 2007 Aug; 1():35. PubMed ID: 17678529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]