These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7739360)

  • 1. In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise.
    Morvan D
    Magn Reson Imaging; 1995; 13(2):193-9. PubMed ID: 7739360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle.
    Morvan D; Leroy-Willig A
    Magn Reson Imaging; 1995; 13(7):943-8. PubMed ID: 8583872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic intravoxel incoherent motion imaging of skeletal muscle at rest and after exercise.
    Filli L; Boss A; Wurnig MC; Kenkel D; Andreisek G; Guggenberger R
    NMR Biomed; 2015 Feb; 28(2):240-6. PubMed ID: 25521711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle perfusion during exercise using Gd-DTPA bolus detection.
    Nygren AT; Greitz D; Kaijser L
    J Cardiovasc Magn Reson; 2000; 2(4):263-70. PubMed ID: 11545125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of strenuous exercise with eccentric muscle contraction: physiological and functional aspects of human skeletal muscle.
    Yanagisawa O; Kurihara T; Okumura K; Fukubayashi T
    Magn Reson Med Sci; 2010; 9(4):179-86. PubMed ID: 21187687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity.
    Heinonen I; Kemppainen J; Kaskinoro K; Peltonen JE; Borra R; Lindroos MM; Oikonen V; Nuutila P; Knuuti J; Hellsten Y; Boushel R; Kalliokoski KK
    J Appl Physiol (1985); 2010 Feb; 108(2):378-86. PubMed ID: 19940098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strenuous resistance exercise effects on magnetic resonance diffusion parameters and muscle-tendon function in human skeletal muscle.
    Yanagisawa O; Kurihara T; Kobayashi N; Fukubayashi T
    J Magn Reson Imaging; 2011 Oct; 34(4):887-94. PubMed ID: 21769968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the correlation between T(2) and tissue diffusion coefficients in exercised muscle: quantitative measurements at 3T within the tibialis anterior.
    Ababneh ZQ; Ababneh R; Maier SE; Winalski CS; Oshio K; Ababneh AM; Mulkern RV
    MAGMA; 2008 Jul; 21(4):273-8. PubMed ID: 18633660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of exercised or cooled skeletal muscle on the basis of diffusion-weighted magnetic resonance imaging.
    Yanagisawa O; Shimao D; Maruyama K; Nielsen M
    Eur J Appl Physiol; 2009 Mar; 105(5):723-9. PubMed ID: 19084988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in cross-sectional area in human exercising and non-exercising skeletal muscles.
    Nygren AT; Greitz D; Kaijser L
    Eur J Appl Physiol; 2000 Feb; 81(3):210-3. PubMed ID: 10638379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BOLD indirect vs. ASL direct measurement of muscle perfusion.
    Leroy-Willig A
    J Appl Physiol (1985); 2005 Jul; 99(1):376-7; author reply 377. PubMed ID: 16036909
    [No Abstract]   [Full Text] [Related]  

  • 13. Real-time contrast-enhanced ultrasound for the assessment of perfusion dynamics in skeletal muscle.
    Krix M; Krakowski-Roosen H; Kauczor HU; Delorme S; Weber MA
    Ultrasound Med Biol; 2009 Oct; 35(10):1587-95. PubMed ID: 19682788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in MR diffusion properties during active muscle contraction in the calf.
    Okamoto Y; Kunimatsu A; Kono T; Nasu K; Sonobe J; Minami M
    Magn Reson Med Sci; 2010; 9(1):1-8. PubMed ID: 20339260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in the rheological flow profile in conduit femoral artery during rhythmic thigh muscle contractions in humans.
    Osada T; Rådegran G
    Jpn J Physiol; 2005 Feb; 55(1):19-28. PubMed ID: 15796786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise.
    Cermak NM; Noseworthy MD; Bourgeois JM; Tarnopolsky MA; Gibala MJ
    Muscle Nerve; 2012 Jul; 46(1):42-50. PubMed ID: 22644795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eccentric exercise slows in vivo microvascular reactivity during brief contractions in human skeletal muscle.
    Larsen RG; Hirata RP; Madzak A; Frøkjær JB; Graven-Nielsen T
    J Appl Physiol (1985); 2015 Dec; 119(11):1272-81. PubMed ID: 26429869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling.
    Frank LR; Wong EC; Haseler LJ; Buxton RB
    Magn Reson Med; 1999 Aug; 42(2):258-67. PubMed ID: 10440950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic diffusion-tensor measurements in muscle tissue using the single-line multiple-echo diffusion-tensor acquisition technique at 3T.
    Baete SH; Cho GY; Sigmund EE
    NMR Biomed; 2015 Jun; 28(6):667-78. PubMed ID: 25900166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brief periods of occlusion and reperfusion increase skeletal muscle force output in humans.
    Libonati JR; Cox M; Incanno N; Melville SK; Musante FC; Glassberg HL; Guazzi M
    Cardiologia; 1998 Dec; 43(12):1355-60. PubMed ID: 9988944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.