These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 7739499)

  • 61. The role of exosomes in CNS inflammation and their involvement in multiple sclerosis.
    Selmaj I; Mycko MP; Raine CS; Selmaj KW
    J Neuroimmunol; 2017 May; 306():1-10. PubMed ID: 28385180
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Multiple sclerosis From Charcot and Vulpian to the present time].
    Rascol A; Clanet M
    Rev Neurol (Paris); 1982; 138(12):921-30. PubMed ID: 6763294
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Astrocytes in the tempest of multiple sclerosis.
    Miljković D; Timotijević G; Mostarica Stojković M
    FEBS Lett; 2011 Dec; 585(23):3781-8. PubMed ID: 21443873
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Blood brain barrier compromise with endothelial inflammation may lead to autoimmune loss of myelin during multiple sclerosis.
    Simka M
    Curr Neurovasc Res; 2009 May; 6(2):132-9. PubMed ID: 19442163
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The extracellular matrix in multiple sclerosis lesions.
    Sobel RA
    J Neuropathol Exp Neurol; 1998 Mar; 57(3):205-17. PubMed ID: 9600212
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evidence for subacute fat embolism as the cause of multiple sclerosis.
    James PB
    Lancet; 1982 Feb; 1(8268):380-6. PubMed ID: 6120358
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The multiple sclerosis lesion: initiated by a localized hypoperfusion in a central nervous system where mechanisms allowing leukocyte infiltration are readily upregulated?
    Juurlink BH
    Med Hypotheses; 1998 Oct; 51(4):299-303. PubMed ID: 9824835
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Understanding the role of the blood brain barrier and peripheral inflammation on behavior and pathology on ongoing confined cortical lesions.
    Silva BA; Farías MI; Miglietta EA; Leal MC; Ávalos JC; Pitossi FJ; Ferrari CC
    Mult Scler Relat Disord; 2022 Jan; 57():103346. PubMed ID: 35158455
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The unsolved puzzle of multiple sclerosis and venous function.
    Franceschi C
    J Neurol Neurosurg Psychiatry; 2009 Apr; 80(4):358. PubMed ID: 19289474
    [No Abstract]   [Full Text] [Related]  

  • 70. Role of fenofibrate in multiple sclerosis.
    Abulaban AA; Al-Kuraishy HM; Al-Gareeb AI; Elekhnawy E; Alanazi A; Alexiou A; Papadakis M; Batiha GE
    Eur J Med Res; 2024 Feb; 29(1):113. PubMed ID: 38336772
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Vascular pathology in multiple sclerosis: reframing pathogenesis around the blood-brain barrier.
    Spencer JI; Bell JS; DeLuca GC
    J Neurol Neurosurg Psychiatry; 2018 Jan; 89(1):42-52. PubMed ID: 28860328
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Anatomical distribution of central nervous system plaques in multiple sclerosis: an Iranian experience.
    Miabi Z; Midia M; Midia R; Moghinan D
    Pak J Biol Sci; 2010 Dec; 13(24):1195-201. PubMed ID: 21313900
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Advanced forms of multiple sclerosis; 3 anatomo-clinical observations, 2 presenting amyotrophia and absent tendon reflexes].
    Schott B; Trouillas P; Tommasi M; Trillet M; Bady B; Boucher M
    Rev Neurol (Paris); 1970 Mar; 122(3):221-3. PubMed ID: 5459720
    [No Abstract]   [Full Text] [Related]  

  • 74. Acute multiple sclerosis with contrast-enhancing plaques.
    Lebow S; Anderson DC; Mastri A; Larson D
    Arch Neurol; 1978 Jul; 35(7):435-9. PubMed ID: 666594
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Potential biological contributers to the sex difference in multiple sclerosis progression.
    Alvarez-Sanchez N; Dunn SE
    Front Immunol; 2023; 14():1175874. PubMed ID: 37122747
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The fine structure of the cns in multiple sclerosis. II. Vesilcular demyelination in an acute case.
    Kirk J
    Neuropathol Appl Neurobiol; 1979 Aug; 5(4):289-94. PubMed ID: 481700
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Manipulation of Oxygen and Endoplasmic Reticulum Stress Factors as Possible Interventions for Treatment of Multiple Sclerosis: Evidence for and Against.
    Eggleton P; Smerdon GR; Holley JE; Gutowski NJ
    Adv Exp Med Biol; 2017; 958():11-27. PubMed ID: 28093705
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis.
    Rodriguez-Mogeda C; Rodríguez-Lorenzo S; Attia J; van Horssen J; Witte ME; de Vries HE
    Biomolecules; 2022 Jun; 12(6):. PubMed ID: 35740925
    [TBL] [Abstract][Full Text] [Related]  

  • 79. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis.
    De Laere M; Berneman ZN; Cools N
    J Neuropathol Exp Neurol; 2018 Mar; 77(3):178-192. PubMed ID: 29342287
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis.
    Fleck AK; Schuppan D; Wiendl H; Klotz L
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28708108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.