These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 7739525)
1. Inducible degradation of I kappa B alpha in vitro and in vivo requires the acidic C-terminal domain of the protein. Rodriguez MS; Michalopoulos I; Arenzana-Seisdedos F; Hay RT Mol Cell Biol; 1995 May; 15(5):2413-9. PubMed ID: 7739525 [TBL] [Abstract][Full Text] [Related]
2. Both amino- and carboxyl-terminal sequences within I kappa B alpha regulate its inducible degradation. Sun S; Elwood J; Greene WC Mol Cell Biol; 1996 Mar; 16(3):1058-65. PubMed ID: 8622650 [TBL] [Abstract][Full Text] [Related]
3. N- and C-terminal sequences control degradation of MAD3/I kappa B alpha in response to inducers of NF-kappa B activity. Whiteside ST; Ernst MK; LeBail O; Laurent-Winter C; Rice N; Israël A Mol Cell Biol; 1995 Oct; 15(10):5339-45. PubMed ID: 7565683 [TBL] [Abstract][Full Text] [Related]
4. Involvement of a putative protein-tyrosine phosphatase and I kappa B-alpha serine phosphorylation in nuclear factor kappa B activation by tumor necrosis factor. Menon SD; Guy GR; Tan YH J Biol Chem; 1995 Aug; 270(32):18881-7. PubMed ID: 7642544 [TBL] [Abstract][Full Text] [Related]
5. Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo. Rodriguez MS; Wright J; Thompson J; Thomas D; Baleux F; Virelizier JL; Hay RT; Arenzana-Seisdedos F Oncogene; 1996 Jun; 12(11):2425-35. PubMed ID: 8649784 [TBL] [Abstract][Full Text] [Related]
6. Transdominant mutants of I kappa B alpha block Tat-tumor necrosis factor synergistic activation of human immunodeficiency virus type 1 gene expression and virus multiplication. Beauparlant P; Kwon H; Clarke M; Lin R; Sonenberg N; Wainberg M; Hiscott J J Virol; 1996 Sep; 70(9):5777-85. PubMed ID: 8709193 [TBL] [Abstract][Full Text] [Related]
7. Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Van Antwerp DJ; Verma IM Mol Cell Biol; 1996 Nov; 16(11):6037-45. PubMed ID: 8887633 [TBL] [Abstract][Full Text] [Related]
8. Identification of an I kappa B alpha-associated protein kinase in a human monocytic cell line and determination of its phosphorylation sites on I kappa B alpha. Kuno K; Ishikawa Y; Ernst MK; Ogata M; Rice NR; Mukaida N; Matsushima K J Biol Chem; 1995 Nov; 270(46):27914-9. PubMed ID: 7499266 [TBL] [Abstract][Full Text] [Related]
9. Multiple structural domains within I kappa B alpha are required for its inducible degradation by both cytokines and phosphatase inhibitors. Good LF; Maggirwar SB; Kealiher A; Uhlik M; Sun SC Biochem Biophys Res Commun; 1996 Jun; 223(1):123-8. PubMed ID: 8660357 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. Traenckner EB; Pahl HL; Henkel T; Schmidt KN; Wilk S; Baeuerle PA EMBO J; 1995 Jun; 14(12):2876-83. PubMed ID: 7796813 [TBL] [Abstract][Full Text] [Related]
11. The zinc finger domain of NEMO is selectively required for NF-kappa B activation by UV radiation and topoisomerase inhibitors. Huang TT; Feinberg SL; Suryanarayanan S; Miyamoto S Mol Cell Biol; 2002 Aug; 22(16):5813-25. PubMed ID: 12138192 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of NF-kappa B activity by a membrane-transducing mutant of I kappa B alpha. Kabouridis PS; Hasan M; Newson J; Gilroy DW; Lawrence T J Immunol; 2002 Sep; 169(5):2587-93. PubMed ID: 12193729 [TBL] [Abstract][Full Text] [Related]
13. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Brockman JA; Scherer DC; McKinsey TA; Hall SM; Qi X; Lee WY; Ballard DW Mol Cell Biol; 1995 May; 15(5):2809-18. PubMed ID: 7739562 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Lin R; Beauparlant P; Makris C; Meloche S; Hiscott J Mol Cell Biol; 1996 Apr; 16(4):1401-9. PubMed ID: 8657113 [TBL] [Abstract][Full Text] [Related]
15. Autoregulation of the NF-kappa B transactivator RelA (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Sun SC; Ganchi PA; Béraud C; Ballard DW; Greene WC Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1346-50. PubMed ID: 8108414 [TBL] [Abstract][Full Text] [Related]
16. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Brown K; Gerstberger S; Carlson L; Franzoso G; Siebenlist U Science; 1995 Mar; 267(5203):1485-8. PubMed ID: 7878466 [TBL] [Abstract][Full Text] [Related]
17. Pervanadate-induced nuclear factor-kappaB activation requires tyrosine phosphorylation and degradation of IkappaBalpha. Comparison with tumor necrosis factor-alpha. Mukhopadhyay A; Manna SK; Aggarwal BB J Biol Chem; 2000 Mar; 275(12):8549-55. PubMed ID: 10722693 [TBL] [Abstract][Full Text] [Related]
18. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. Schoonbroodt S; Ferreira V; Best-Belpomme M; Boelaert JR; Legrand-Poels S; Korner M; Piette J J Immunol; 2000 Apr; 164(8):4292-300. PubMed ID: 10754328 [TBL] [Abstract][Full Text] [Related]
19. Sphingomyelinase activates proteolytic I kappa B-alpha degradation in a cell-free system. Machleidt T; Wiegmann K; Henkel T; Schütze S; Baeuerle P; Krönke M J Biol Chem; 1994 May; 269(19):13760-5. PubMed ID: 8188652 [TBL] [Abstract][Full Text] [Related]