BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 7739554)

  • 1. Dynamic protein-DNA architecture of a yeast heat shock promoter.
    Giardina C; Lis JT
    Mol Cell Biol; 1995 May; 15(5):2737-44. PubMed ID: 7739554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.
    Gross DS; Adams CC; Lee S; Stentz B
    EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A distal heat shock element promotes the rapid response to heat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae.
    Chen J; Pederson DS
    J Biol Chem; 1993 Apr; 268(10):7442-8. PubMed ID: 8463277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements.
    Gross DS; English KE; Collins KW; Lee SW
    J Mol Biol; 1990 Dec; 216(3):611-31. PubMed ID: 2175361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoter function and in situ protein/DNA interactions upstream of the yeast HSP90 heat shock genes.
    Gross DS; Adams CC; English KE; Collins KW; Lee S
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):175-86. PubMed ID: 2256678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin.
    Sekinger EA; Gross DS
    EMBO J; 1999 Dec; 18(24):7041-55. PubMed ID: 10601026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro.
    Amin J; Fernandez M; Ananthan J; Lis JT; Voellmy R
    J Biol Chem; 1994 Feb; 269(7):4804-11. PubMed ID: 8106450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription factor TFIIH is required for promoter melting in vivo.
    Guzmán E; Lis JT
    Mol Cell Biol; 1999 Aug; 19(8):5652-8. PubMed ID: 10409754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive binding of yeast heat shock factor to DNA in vivo.
    Jakobsen BK; Pelham HR
    Mol Cell Biol; 1988 Nov; 8(11):5040-2. PubMed ID: 3062378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter.
    Brandl CJ; Martens JA; Liaw PC; Furlanetto AM; Wobbe CR
    J Biol Chem; 1992 Oct; 267(29):20943-52. PubMed ID: 1400410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the cis-acting DNA sequence elements regulating the transcription of the Saccharomyces cerevisiae gene encoding TBP, the TATA box binding protein.
    Schroeder SC; Wang CK; Weil PA
    J Biol Chem; 1994 Nov; 269(45):28335-46. PubMed ID: 7961772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae.
    Pederson DS; Fidrych T
    Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density.
    Zhao J; Herrera-Diaz J; Gross DS
    Mol Cell Biol; 2005 Oct; 25(20):8985-99. PubMed ID: 16199876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium salicylate and yeast heat shock gene transcription.
    Giardina C; Lis JT
    J Biol Chem; 1995 May; 270(18):10369-72. PubMed ID: 7737966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between DNA-bound trimers of the yeast heat shock factor.
    Bonner JJ; Ballou C; Fackenthal DL
    Mol Cell Biol; 1994 Jan; 14(1):501-8. PubMed ID: 8264619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.