These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 7740904)

  • 1. Effect of carbon- and phosphorus-content on the phosphomonoesterase activity in soil.
    Máthé P; Füleky G; Anton A
    Acta Biol Hung; 1994; 45(1):81-5. PubMed ID: 7740904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of environmental factors and Mn, Zn, Cu trace elements on the soil phosphomonoesterase and amidase activity. Application of DISITOBI model.
    Anton A; Máthé P; Radimszky L; Füleky G; Biczók G
    Acta Biol Hung; 1994; 45(1):39-50. PubMed ID: 7740899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China.
    Chen X; Jiang N; Condron LM; Dunfield KE; Chen Z; Wang J; Chen L
    Sci Total Environ; 2019 Jun; 669():1011-1018. PubMed ID: 30970450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of activities of root phosphomonoesterase and phosphodiesterase in wetland plants as a function of macrophyte species and ambient phosphorus regime.
    Rejmánková E; Sirová D; Carlson E
    New Phytol; 2011 Jun; 190(4):968-976. PubMed ID: 21714183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Phosphatase activities in rice-planting meadow brown soil and their responses to fertilization].
    Shen J; Chen Z; Chen L
    Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):583-5. PubMed ID: 15943382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity.
    Turner BL; Haygarth PM
    Sci Total Environ; 2005 May; 344(1-3):27-36. PubMed ID: 15907508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The changes in the structure and properties of alkali-soluble humic substances in phosphorus-enriched gray forest soil].
    Kudeiarova AIu
    Izv Akad Nauk Ser Biol; 2003; (6):754-65. PubMed ID: 14994481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition.
    Turner BL; Baxter R; Whitton BA
    Environ Pollut; 2002; 120(2):313-7. PubMed ID: 12395844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble inorganic tissue phosphorus and calcicole-calcifuge behaviour of plants.
    Zohlen A; Tyler G
    Ann Bot; 2004 Sep; 94(3):427-32. PubMed ID: 15277247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability.
    Yan M; Yu L; Zhang L; Guo Y; Dai K; Chen Y
    J Environ Sci (China); 2014 Nov; 26(11):2315-21. PubMed ID: 25458687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic activity in a semi-gley soil under the floodplain forest in South Moravia.
    Ambroz Z
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(5-6):541-3. PubMed ID: 203142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localisation of phosphomonoesterase activity in ectomycorrhizal fungi grown on different phosphorus sources.
    Nygren CMR; Rosling A
    Mycorrhiza; 2009 Mar; 19(3):197-204. PubMed ID: 19139930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considerations on the use of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi.
    Tibbett M
    Microbiol Res; 2002; 157(3):221-31. PubMed ID: 12398293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon deposition in soil rhizosphere following amendments with compost and its soluble fractions, as evaluated by combined soil-plant rhizobox and reporter gene systems.
    Puglisi E; Fragoulis G; Del Re AA; Spaccini R; Piccolo A; Gigliotti G; Said-Pullicino D; Trevisan M
    Chemosphere; 2008 Nov; 73(8):1292-9. PubMed ID: 18768204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris.
    Rufyikiri G; Wannijn J; Wang L; Thiry Y
    Environ Pollut; 2006 Jun; 141(3):420-7. PubMed ID: 16271279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Content of ash and phosphorus, specific conductivity and phosphatase activity of light commercial honeys].
    Andrelowicz A; Kotlarek J
    Rocz Panstw Zakl Hig; 1968; 19(1):89-96. PubMed ID: 4298850
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of Exogenous Phytase Addition on Soil Phosphatase Activities: a Fluorescence Spectroscopy Study.
    Yang XZ; Chen ZH; Zhang YL; Chen LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1294-9. PubMed ID: 26415447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of C, N and P in soil amended with biosolids from a pharmaceutical industry producing cephalosporines or third generation antibiotics: a laboratory study.
    Franco-Hernández O; Dendooven L
    Bioresour Technol; 2006 Sep; 97(13):1563-71. PubMed ID: 16129602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific delta13C analyses.
    Sauheitl L; Glaser B; Bol R
    Rapid Commun Mass Spectrom; 2005; 19(11):1437-46. PubMed ID: 15880645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.