These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 7741258)
1. The role of iron chelators and oxygen in the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 oxidoreductase-dependent chromium(VI) reduction. Mikalsen A; Capellmann M; Alexander J Analyst; 1995 Mar; 120(3):935-8. PubMed ID: 7741258 [TBL] [Abstract][Full Text] [Related]
3. Cytochrome b(5) plays a key role in human microsomal chromium(VI) reduction. Jannetto PJ; Antholine WE; Myers CR Toxicology; 2001 Feb; 159(3):119-33. PubMed ID: 11223168 [TBL] [Abstract][Full Text] [Related]
4. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase. Winston GW; Feierman DE; Cederbaum AI Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321 [TBL] [Abstract][Full Text] [Related]
5. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation. Morehouse LA; Thomas CE; Aust SD Arch Biochem Biophys; 1984 Jul; 232(1):366-77. PubMed ID: 6331320 [TBL] [Abstract][Full Text] [Related]
6. A microsomal membrane component associated with iron reduction in NADPH-supported lipid peroxidation. Tampo Y; Yonaha M Lipids; 1995 Jan; 30(1):55-62. PubMed ID: 7760689 [TBL] [Abstract][Full Text] [Related]
7. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase. Dutton DR; Reed GA; Parkinson A Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338 [TBL] [Abstract][Full Text] [Related]
8. Reductive metabolism and protein binding of chromium(VI) by P450 protein enzymes. Mikalsen A; Alexander J; Wallin H; Ingelman-Sundberg M; Andersen RA Carcinogenesis; 1991 May; 12(5):825-31. PubMed ID: 1903091 [TBL] [Abstract][Full Text] [Related]
9. Effects of superoxide dismutase and catalase during reduction of adrenochrome by DT-diaphorase and NADPH-cytochrome P450 reductase. Baez S; Segura-Aguilar J Biochem Mol Med; 1995 Oct; 56(1):37-44. PubMed ID: 8593536 [TBL] [Abstract][Full Text] [Related]
10. Chemiluminescence studies on the generation of oxygen radicals from the interaction of NADPH-cytochrome P-450 reductase with iron. Puntarulo S; Cederbaum AI Arch Biochem Biophys; 1987 Nov; 258(2):510-8. PubMed ID: 2823718 [TBL] [Abstract][Full Text] [Related]
11. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phosphate-adriamycin and Fe3+-ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation. Sugioka K; Nakano H; Nakano M; Tero-Kubota S; Ikegami Y Biochim Biophys Acta; 1983 Oct; 753(3):411-21. PubMed ID: 6311278 [TBL] [Abstract][Full Text] [Related]
12. Oxygen reduction and lipid peroxidation by iron chelates with special reference to ferric nitrilotriacetate. Hamazaki S; Okada S; Li JL; Toyokuni S; Midorikawa O Arch Biochem Biophys; 1989 Jul; 272(1):10-7. PubMed ID: 2500058 [TBL] [Abstract][Full Text] [Related]
13. Microsomal reduction of low-molecular-weight Fe3+ chelates and ferritin: enhancement by adriamycin, paraquat, menadione, and anthraquinone 2-sulfonate and inhibition by oxygen. Vile GF; Winterbourn CC Arch Biochem Biophys; 1988 Dec; 267(2):606-13. PubMed ID: 2850767 [TBL] [Abstract][Full Text] [Related]
14. Paraquat and ferritin-dependent lipid peroxidation. Saito M; Thomas CE; Aust SD J Free Radic Biol Med; 1985; 1(3):179-85. PubMed ID: 3939139 [TBL] [Abstract][Full Text] [Related]
15. Microsomal lipid peroxidation: the role of NADPH--cytochrome P450 reductase and cytochrome P450. Sevanian A; Nordenbrand K; Kim E; Ernster L; Hochstein P Free Radic Biol Med; 1990; 8(2):145-52. PubMed ID: 2110108 [TBL] [Abstract][Full Text] [Related]
16. Role of iron, hydrogen peroxide and reactive oxygen species in microsomal oxidation of glycerol to formaldehyde. Clejan LA; Cederbaum AI Arch Biochem Biophys; 1991 Feb; 285(1):83-9. PubMed ID: 1846735 [TBL] [Abstract][Full Text] [Related]
17. Effects of citrinin on iron-redox cycle. Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267 [TBL] [Abstract][Full Text] [Related]
18. Participation of superoxide, hydrogen peroxide and hydroxyl radicals in NADPH-cytochrome P-450 reductase-catalyzed peroxidation of methyl linolenate. Kameda K; Ono T; Imai Y Biochim Biophys Acta; 1979 Jan; 572(1):77-82. PubMed ID: 32915 [TBL] [Abstract][Full Text] [Related]
19. Importance of Fe2+-ADP and the relative unimportance of OH in the mechanism of mitomycin C-induced lipid peroxidation. Nakano H; Sugioka K; Nakano M; Mizukami M; Kimura H; Tero-Kubota S; Ikegami Y Biochim Biophys Acta; 1984 Dec; 796(3):285-93. PubMed ID: 6095916 [TBL] [Abstract][Full Text] [Related]
20. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates. Prabhu HR; Krishnamurthy S Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]