These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7741714)

  • 1. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.
    Bonaventure J; Cohen-Solal L; Ritvaniemi P; Van Maldergem L; Kadhom N; Delezoide AL; Maroteaux P; Prockop DJ; Ala-Kokko L
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):823-30. PubMed ID: 7741714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A radiographic, morphologic, biochemical and molecular analysis of a case of achondrogenesis type II resulting from substitution for a glycine residue (Gly691-->Arg) in the type II collagen trimer.
    Mortier GR; Wilkin DJ; Wilcox WR; Rimoin DL; Lachman RS; Eyre DR; Cohn DH
    Hum Mol Genet; 1995 Feb; 4(2):285-8. PubMed ID: 7757081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a type II collagen gene (COL2A1) mutation identified in cultured chondrocytes from human hypochondrogenesis.
    Horton WA; Machado MA; Ellard J; Campbell D; Bartley J; Ramirez F; Vitale E; Lee B
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4583-7. PubMed ID: 1374906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An amino acid substitution (Gly853-->Glu) in the collagen alpha 1(II) chain produces hypochondrogenesis.
    Bogaert R; Tiller GE; Weis MA; Gruber HE; Rimoin DL; Cohn DH; Eyre DR
    J Biol Chem; 1992 Nov; 267(31):22522-6. PubMed ID: 1429602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation in the COL2A1 gene in a patient with hypochondrogenesis. Expression of mutated COL2A1 gene is accompanied by expression of genes for type I procollagen in chondrocytes.
    Freisinger P; Ala-Kokko L; LeGuellec D; Franc S; Bouvier R; Ritvaniemi P; Prockop DJ; Bonaventure J
    J Biol Chem; 1994 May; 269(18):13663-9. PubMed ID: 8175802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Report of five novel and one recurrent COL2A1 mutations with analysis of genotype-phenotype correlation in patients with a lethal type II collagen disorder.
    Mortier GR; Weis M; Nuytinck L; King LM; Wilkin DJ; De Paepe A; Lachman RS; Rimoin DL; Eyre DR; Cohn DH
    J Med Genet; 2000 Apr; 37(4):263-71. PubMed ID: 10745044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycine to serine substitution in the triple helical domain of pro-alpha 1 (II) collagen results in a lethal perinatal form of short-limbed dwarfism.
    Vissing H; D'Alessio M; Lee B; Ramirez F; Godfrey M; Hollister DW
    J Biol Chem; 1989 Nov; 264(31):18265-7. PubMed ID: 2572591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substitution of serine for alpha 1(I)-glycine 844 in a severe variant of osteogenesis imperfecta minimally destabilizes the triple helix of type I procollagen. The effects of glycine substitutions on thermal stability are either position of amino acid specific.
    Pack M; Constantinou CD; Kalia K; Nielsen KB; Prockop DJ
    J Biol Chem; 1989 Nov; 264(33):19694-9. PubMed ID: 2511192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alpha2(I) glycine to aspartate substitution is responsible for the presence of a kink in type I collagen in a lethal case of osteogenesis imperfecta.
    Forlino A; Keene DR; Schmidt K; Marini JC
    Matrix Biol; 1998 Dec; 17(8-9):575-84. PubMed ID: 9923651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serine for glycine substitutions in type I collagen in two cases of type IV osteogenesis imperfecta (OI). Additional evidence for a regional model of OI pathophysiology.
    Marini JC; Lewis MB; Wang Q; Chen KJ; Orrison BM
    J Biol Chem; 1993 Feb; 268(4):2667-73. PubMed ID: 8094076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alpha 1(II) Gly913 to Cys substitution prevents the matrix incorporation of type II collagen which is replaced with type I and III collagens in cartilage from a patient with hypochondrogenesis.
    Mundlos S; Chan D; McGill J; Bateman JF
    Am J Med Genet; 1996 May; 63(1):129-36. PubMed ID: 8723098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations that substitute serine for glycine alpha 1-598 and glycine alpha 1-631 in type I procollagen. The effects on thermal unfolding of the triple helix are position-specific and demonstrate that the protein unfolds through a series of cooperative blocks.
    Westerhausen A; Kishi J; Prockop DJ
    J Biol Chem; 1990 Aug; 265(23):13995-4000. PubMed ID: 2116413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro alpha 1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite.
    Culbert AA; Lowe MP; Atkinson M; Byers PH; Wallis GA; Kadler KE
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):815-20. PubMed ID: 7487936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type II collagen pro-alpha-chains containing a Gly574Ser mutation are not incorporated into the cartilage matrix of transgenic mice.
    Maddox BK; Garofalo S; Keene DR; Smith C; Horton WA
    Matrix Biol; 1997 Aug; 16(3):93-103. PubMed ID: 9314159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single base mutation in type I procollagen (COL1A1) that converts glycine alpha 1-541 to aspartate in a lethal variant of osteogenesis imperfecta: detection of the mutation with a carbodiimide reaction of DNA heteroduplexes and direct sequencing of products of the PCR.
    Zhuang JP; Constantinou CD; Ganguly A; Prockop DJ
    Am J Hum Genet; 1991 Jun; 48(6):1186-91. PubMed ID: 2035536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of three osteogenesis imperfecta collagen alpha 1(I) glycine to serine mutations demonstrating a position-dependent gradient of phenotypic severity.
    Bateman JF; Moeller I; Hannagan M; Chan D; Cole WG
    Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):131-5. PubMed ID: 1445258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structurally abnormal type II collagen in a severe form of Kniest dysplasia caused by an exon 24 skipping mutation.
    Weis MA; Wilkin DJ; Kim HJ; Wilcox WR; Lachman RS; Rimoin DL; Cohn DH; Eyre DR
    J Biol Chem; 1998 Feb; 273(8):4761-8. PubMed ID: 9468540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low basal transcription of genes for tissue-specific collagens by fibroblasts and lymphoblastoid cells. Application to the characterization of a glycine 997 to serine substitution in alpha 1(II) collagen chains of a patient with spondyloepiphyseal dysplasia.
    Chan D; Cole WG
    J Biol Chem; 1991 Jul; 266(19):12487-94. PubMed ID: 1905723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type I procollagens containing substitutions of aspartate, arginine, and cysteine for glycine in the pro alpha 1 (I) chain are cleaved slowly by N-proteinase, but only the cysteine substitution introduces a kink in the molecule.
    Lightfoot SJ; Holmes DF; Brass A; Grant ME; Byers PH; Kadler KE
    J Biol Chem; 1992 Dec; 267(35):25521-8. PubMed ID: 1460046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of collagen I from a proband homozygous for a mutation that substituted serine for glycine at position 661 in the alpha 2(I) chain. Possible relationship between the effects of mutations on critical concentration and the severity of the phenotype.
    Romanic AM; Spotila LD; Adachi E; Engel J; Hojima Y; Prockop DJ
    J Biol Chem; 1994 Apr; 269(15):11614-9. PubMed ID: 8157695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.