These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 7741720)

  • 21. Prostaglandin F(2alpha) negatively regulates bone resorption in murine osteoclast development.
    Kamon M; Fujita D; Goto N; Amano H; Sakamoto K
    Prostaglandins Other Lipid Mediat; 2008 Dec; 87(1-4):26-33. PubMed ID: 18638564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of genetically modified mouse models to the elucidation of bone physiology.
    Thomas T; Lafage-Proust MH
    Rev Rhum Engl Ed; 1999 Dec; 66(12):728-35. PubMed ID: 10649609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The molecular understanding of osteoclast differentiation.
    Asagiri M; Takayanagi H
    Bone; 2007 Feb; 40(2):251-64. PubMed ID: 17098490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CSF-1 induces fos gene transcription and activates the transcription factor Elk-1 in mature osteoclasts.
    Yao GQ; Itokawa T; Paliwal I; Insogna K
    Calcif Tissue Int; 2005 May; 76(5):371-8. PubMed ID: 15812575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio.
    Kiviranta R; Morko J; Alatalo SL; NicAmhlaoibh R; Risteli J; Laitala-Leinonen T; Vuorio E
    Bone; 2005 Jan; 36(1):159-72. PubMed ID: 15664014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone and haematopoietic defects in mice lacking c-fos.
    Wang ZQ; Ovitt C; Grigoriadis AE; Möhle-Steinlein U; Rüther U; Wagner EF
    Nature; 1992 Dec 24-31; 360(6406):741-5. PubMed ID: 1465144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of osteoclast differentiation and bone resorption by a novel lysophosphatidylcholine derivative, SCOH.
    Kwak HB; Lee SW; Li YJ; Kim YA; Han SY; Jhon GJ; Kim HH; Lee ZH
    Biochem Pharmacol; 2004 Apr; 67(7):1239-48. PubMed ID: 15013839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Msx2 -/- transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis.
    Aïoub M; Lézot F; Molla M; Castaneda B; Robert B; Goubin G; Néfussi JR; Berdal A
    Bone; 2007 Nov; 41(5):851-9. PubMed ID: 17878071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. c-Fos protein as a target of anti-osteoclastogenic action of vitamin D, and synthesis of new analogs.
    Takasu H; Sugita A; Uchiyama Y; Katagiri N; Okazaki M; Ogata E; Ikeda K
    J Clin Invest; 2006 Feb; 116(2):528-35. PubMed ID: 16424941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The synergistic role of Pu.1 and Fms in zebrafish osteoclast-reducing osteopetrosis and possible therapeutic strategies.
    Liu W; Di Q; Li K; Li J; Ma N; Huang Z; Chen J; Zhang S; Zhang W; Zhang Y
    J Genet Genomics; 2020 Sep; 47(9):535-546. PubMed ID: 33184003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lessons from osteopetrotic mutations in animals: impact on our current understanding of osteoclast biology.
    Van Wesenbeeck L; Van Hul W
    Crit Rev Eukaryot Gene Expr; 2005; 15(2):133-62. PubMed ID: 16022633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Animal models of osteopetrosis: the impact of recent molecular developments on novel strategies for therapeutic intervention.
    Popoff SN; Schneider GB
    Mol Med Today; 1996 Aug; 2(8):349-58. PubMed ID: 8796921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heritable sclerosing bone disorders: presentation and new molecular mechanisms.
    de Vernejoul MC; Kornak U
    Ann N Y Acad Sci; 2010 Mar; 1192():269-77. PubMed ID: 20392246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone Fos-silization.
    Weitzman J
    Trends Mol Med; 2001 Jan; 7(1):10. PubMed ID: 11427972
    [No Abstract]   [Full Text] [Related]  

  • 35. miRNA-27a is essential for bone remodeling by modulating p62-mediated osteoclast signaling.
    Wang S; Maruyama EO; Martinez J; Lopes J; Hsu T; Wu W; Hsu W; Maruyama T
    Elife; 2023 Feb; 12():. PubMed ID: 36752600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Function of Fos proteins in bone cell differentiation.
    Matsuo K; Jochum W; Owens JM; Chambers TJ; Wagner EF
    Bone; 1999 Jul; 25(1):141. PubMed ID: 10423040
    [No Abstract]   [Full Text] [Related]  

  • 37. Functions of Fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis.
    Bakiri L; Reschke MO; Gefroh HA; Idarraga MH; Polzer K; Zenz R; Schett G; Wagner EF
    Oncogene; 2011 Mar; 30(13):1506-17. PubMed ID: 21119595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fos and bone cell development: lessons from a nuclear oncogene.
    Grigoriadis AE; Wang ZQ; Wagner EF
    Trends Genet; 1995 Nov; 11(11):436-41. PubMed ID: 8578600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pleiotropic effects of a null mutation in the c-fos proto-oncogene.
    Johnson RS; Spiegelman BM; Papaioannou V
    Cell; 1992 Nov; 71(4):577-86. PubMed ID: 1423615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Therapeutic potential of a prominent dihydroxyflavanone pinocembrin for osteolytic bone disease:
    Hong G; Li S; Zheng G; Zheng X; Zhan Q; Zhou L; Wei Q; He W; Chen Z
    J Orthop Translat; 2024 Mar; 45():197-210. PubMed ID: 38685969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.