BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7741755)

  • 1. The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria.
    Czyz A; Szewczyk A; Nałecz MJ; Wojtczak L
    Biochem Biophys Res Commun; 1995 May; 210(1):98-104. PubMed ID: 7741755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channel opener, RP 66471, induces membrane depolarization of rat liver mitochondria.
    Szewczyk A; Wójcik G; Nałecz MJ
    Biochem Biophys Res Commun; 1995 Feb; 207(1):126-32. PubMed ID: 7857254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of glibenclamide-sensitive K+ fluxes in rat liver mitochondria.
    Belyaeva EA; Szewczyk A; Mikołajek B; Nałecz MJ; Wojtczak L
    Biochem Mol Biol Int; 1993 Nov; 31(3):493-500. PubMed ID: 8118425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuprous ions activate glibenclamide-sensitive potassium channel in liver mitochondria.
    Wojtczak L; Nikitina ER; Czyz A; Skulskii IA
    Biochem Biophys Res Commun; 1996 Jun; 223(2):468-73. PubMed ID: 8670305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An attempt to quantify K+ fluxes in rat liver mitochondria.
    Belyaeva EA; Wojtczak L
    Biochem Mol Biol Int; 1994 May; 33(1):165-75. PubMed ID: 8081206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-cation translocation in tumor cell mitochondria.
    Papa S; Capuano F; Capitanio N; Lorusso M; Galeotti T
    Cancer Res; 1983 Feb; 43(2):834-8. PubMed ID: 6848196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-ohmic proton conductance of mitochondria and liposomes.
    Krishnamoorthy G; Hinkle PC
    Biochemistry; 1984 Apr; 23(8):1640-5. PubMed ID: 6722116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-regulated potassium channel blocker, glibenclamide, uncouples mitochondria.
    Szewczyk A; Czyz A; Nałecz MJ
    Pol J Pharmacol; 1997; 49(1):49-52. PubMed ID: 9431552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the mitochondrial K(+)ATP channel in H2O2- or NO-induced programmed death of soybean suspension cell cultures.
    Casolo V; Petrussa E; Krajnáková J; Macrì F; Vianello A
    J Exp Bot; 2005 Mar; 56(413):997-1006. PubMed ID: 15710634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Respiration and ion permeability of the inner membrane in rat "sodium" liver mitochondria].
    Korotkov SM; Glazunov VV; Nikitina EP
    Tsitologiia; 1997; 39(11):1046-54. PubMed ID: 9505347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial transmembrane potential and pH gradient during anoxia.
    Andersson BS; Aw TY; Jones DP
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C349-55. PubMed ID: 3565555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment.
    Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS
    Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Kinetic modeling of energy metabolism and generation of active forms of oxygen in hepatocyte mitochondria].
    Demin OV; Gorianin II; Kholodenko BN; Westerhoff HV
    Mol Biol (Mosk); 2001; 35(6):1095-104. PubMed ID: 11771135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opening of potassium channels protects mitochondrial function from calcium overload.
    Crestanello JA; Doliba NM; Babsky AM; Doliba NM; Niibori K; Osbakken MD; Whitman GJ
    J Surg Res; 2000 Dec; 94(2):116-23. PubMed ID: 11104651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-dependent potassium channel from rat liver mitochondria: inhibitory analysis, channel clusterization.
    Mironova GD; Grigoriev SM; Skarga YuYu ; Negoda AE; Kolomytkin OV
    Membr Cell Biol; 1997; 10(5):583-91. PubMed ID: 9225262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mitochondrial permeability transition by polyamines and magnesium: importance of the number and distribution of electric charges.
    Tassani V; Biban C; Toninello A; Siliprandi D
    Biochem Biophys Res Commun; 1995 Feb; 207(2):661-7. PubMed ID: 7864857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria.
    Fransvea E; La Piana G; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid release of Mg(2+) from liver mitochondria by nonesterified long-chain fatty acids in alkaline media.
    Schönfeld P; Schüttig R; Wojtczak L
    Arch Biochem Biophys; 2002 Jul; 403(1):16-24. PubMed ID: 12061797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide, a physiological modulator of mitochondrial function.
    Okada S; Takehara Y; Yabuki M; Yoshioka T; Yasuda T; Inoue M; Utsumi K
    Physiol Chem Phys Med NMR; 1996; 28(2):69-82. PubMed ID: 8946766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.