These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7741755)

  • 1. The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria.
    Czyz A; Szewczyk A; Nałecz MJ; Wojtczak L
    Biochem Biophys Res Commun; 1995 May; 210(1):98-104. PubMed ID: 7741755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channel opener, RP 66471, induces membrane depolarization of rat liver mitochondria.
    Szewczyk A; Wójcik G; Nałecz MJ
    Biochem Biophys Res Commun; 1995 Feb; 207(1):126-32. PubMed ID: 7857254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of glibenclamide-sensitive K+ fluxes in rat liver mitochondria.
    Belyaeva EA; Szewczyk A; Mikołajek B; Nałecz MJ; Wojtczak L
    Biochem Mol Biol Int; 1993 Nov; 31(3):493-500. PubMed ID: 8118425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuprous ions activate glibenclamide-sensitive potassium channel in liver mitochondria.
    Wojtczak L; Nikitina ER; Czyz A; Skulskii IA
    Biochem Biophys Res Commun; 1996 Jun; 223(2):468-73. PubMed ID: 8670305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An attempt to quantify K+ fluxes in rat liver mitochondria.
    Belyaeva EA; Wojtczak L
    Biochem Mol Biol Int; 1994 May; 33(1):165-75. PubMed ID: 8081206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-cation translocation in tumor cell mitochondria.
    Papa S; Capuano F; Capitanio N; Lorusso M; Galeotti T
    Cancer Res; 1983 Feb; 43(2):834-8. PubMed ID: 6848196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-ohmic proton conductance of mitochondria and liposomes.
    Krishnamoorthy G; Hinkle PC
    Biochemistry; 1984 Apr; 23(8):1640-5. PubMed ID: 6722116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-regulated potassium channel blocker, glibenclamide, uncouples mitochondria.
    Szewczyk A; Czyz A; Nałecz MJ
    Pol J Pharmacol; 1997; 49(1):49-52. PubMed ID: 9431552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the mitochondrial K(+)ATP channel in H2O2- or NO-induced programmed death of soybean suspension cell cultures.
    Casolo V; Petrussa E; Krajnáková J; Macrì F; Vianello A
    J Exp Bot; 2005 Mar; 56(413):997-1006. PubMed ID: 15710634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Respiration and ion permeability of the inner membrane in rat "sodium" liver mitochondria].
    Korotkov SM; Glazunov VV; Nikitina EP
    Tsitologiia; 1997; 39(11):1046-54. PubMed ID: 9505347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial transmembrane potential and pH gradient during anoxia.
    Andersson BS; Aw TY; Jones DP
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C349-55. PubMed ID: 3565555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment.
    Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS
    Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Kinetic modeling of energy metabolism and generation of active forms of oxygen in hepatocyte mitochondria].
    Demin OV; Gorianin II; Kholodenko BN; Westerhoff HV
    Mol Biol (Mosk); 2001; 35(6):1095-104. PubMed ID: 11771135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opening of potassium channels protects mitochondrial function from calcium overload.
    Crestanello JA; Doliba NM; Babsky AM; Doliba NM; Niibori K; Osbakken MD; Whitman GJ
    J Surg Res; 2000 Dec; 94(2):116-23. PubMed ID: 11104651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-dependent potassium channel from rat liver mitochondria: inhibitory analysis, channel clusterization.
    Mironova GD; Grigoriev SM; Skarga YuYu ; Negoda AE; Kolomytkin OV
    Membr Cell Biol; 1997; 10(5):583-91. PubMed ID: 9225262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mitochondrial permeability transition by polyamines and magnesium: importance of the number and distribution of electric charges.
    Tassani V; Biban C; Toninello A; Siliprandi D
    Biochem Biophys Res Commun; 1995 Feb; 207(2):661-7. PubMed ID: 7864857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria.
    Fransvea E; La Piana G; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid release of Mg(2+) from liver mitochondria by nonesterified long-chain fatty acids in alkaline media.
    Schönfeld P; Schüttig R; Wojtczak L
    Arch Biochem Biophys; 2002 Jul; 403(1):16-24. PubMed ID: 12061797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide, a physiological modulator of mitochondrial function.
    Okada S; Takehara Y; Yabuki M; Yoshioka T; Yasuda T; Inoue M; Utsumi K
    Physiol Chem Phys Med NMR; 1996; 28(2):69-82. PubMed ID: 8946766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.