These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 7741755)
1. The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria. Czyz A; Szewczyk A; Nałecz MJ; Wojtczak L Biochem Biophys Res Commun; 1995 May; 210(1):98-104. PubMed ID: 7741755 [TBL] [Abstract][Full Text] [Related]
2. Potassium channel opener, RP 66471, induces membrane depolarization of rat liver mitochondria. Szewczyk A; Wójcik G; Nałecz MJ Biochem Biophys Res Commun; 1995 Feb; 207(1):126-32. PubMed ID: 7857254 [TBL] [Abstract][Full Text] [Related]
3. Demonstration of glibenclamide-sensitive K+ fluxes in rat liver mitochondria. Belyaeva EA; Szewczyk A; Mikołajek B; Nałecz MJ; Wojtczak L Biochem Mol Biol Int; 1993 Nov; 31(3):493-500. PubMed ID: 8118425 [TBL] [Abstract][Full Text] [Related]
9. Involvement of the mitochondrial K(+)ATP channel in H2O2- or NO-induced programmed death of soybean suspension cell cultures. Casolo V; Petrussa E; Krajnáková J; Macrì F; Vianello A J Exp Bot; 2005 Mar; 56(413):997-1006. PubMed ID: 15710634 [TBL] [Abstract][Full Text] [Related]
10. [Respiration and ion permeability of the inner membrane in rat "sodium" liver mitochondria]. Korotkov SM; Glazunov VV; Nikitina EP Tsitologiia; 1997; 39(11):1046-54. PubMed ID: 9505347 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial transmembrane potential and pH gradient during anoxia. Andersson BS; Aw TY; Jones DP Am J Physiol; 1987 Apr; 252(4 Pt 1):C349-55. PubMed ID: 3565555 [TBL] [Abstract][Full Text] [Related]
12. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment. Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104 [TBL] [Abstract][Full Text] [Related]
13. [Kinetic modeling of energy metabolism and generation of active forms of oxygen in hepatocyte mitochondria]. Demin OV; Gorianin II; Kholodenko BN; Westerhoff HV Mol Biol (Mosk); 2001; 35(6):1095-104. PubMed ID: 11771135 [TBL] [Abstract][Full Text] [Related]
16. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria. Woelders H; van der Velden T; van Dam K Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of mitochondrial permeability transition by polyamines and magnesium: importance of the number and distribution of electric charges. Tassani V; Biban C; Toninello A; Siliprandi D Biochem Biophys Res Commun; 1995 Feb; 207(2):661-7. PubMed ID: 7864857 [TBL] [Abstract][Full Text] [Related]
18. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria. Fransvea E; La Piana G; Marzulli D; Lofrumento NE Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671 [TBL] [Abstract][Full Text] [Related]
19. Rapid release of Mg(2+) from liver mitochondria by nonesterified long-chain fatty acids in alkaline media. Schönfeld P; Schüttig R; Wojtczak L Arch Biochem Biophys; 2002 Jul; 403(1):16-24. PubMed ID: 12061797 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide, a physiological modulator of mitochondrial function. Okada S; Takehara Y; Yabuki M; Yoshioka T; Yasuda T; Inoue M; Utsumi K Physiol Chem Phys Med NMR; 1996; 28(2):69-82. PubMed ID: 8946766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]