These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7742259)

  • 1. Contractile failure in early myocardial ischemia: models and mechanisms.
    Gasser RN; Klein W
    Cardiovasc Drugs Ther; 1994 Dec; 8(6):813-22. PubMed ID: 7742259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Contractile force and myocardial ischemia--electrical and ionic mechanisms].
    Köppel H; Klein W; Grisold M; Gasser R
    Acta Med Austriaca; 1997; 24(3):114-21. PubMed ID: 9312974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning.
    Shigematsu S; Sato T; Abe T; Saikawa T; Sakata T; Arita M
    Circulation; 1995 Oct; 92(8):2266-75. PubMed ID: 7554211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle.
    Venkatesh N; Stuart JS; Lamp ST; Alexander LD; Weiss JN
    Circ Res; 1992 Dec; 71(6):1324-33. PubMed ID: 1423930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation.
    McPherson CD; Pierce GN; Cole WC
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1809-18. PubMed ID: 8238595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathophysiological functions of ATP-sensitive K+ channels in myocardial ischemia.
    Hiraoka M
    Jpn Heart J; 1997 May; 38(3):297-315. PubMed ID: 9290566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen free radicals and excitation-contraction coupling.
    Goldhaber JI; Qayyum MS
    Antioxid Redox Signal; 2000; 2(1):55-64. PubMed ID: 11232601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shortening of monophasic action potential duration during hyperkalemia and myocardial ischemia in anesthetized dogs.
    Hamada K; Yamazaki J; Nagao T
    Jpn J Pharmacol; 1998 Feb; 76(2):149-54. PubMed ID: 9541277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration.
    Shaw RM; Rudy Y
    Cardiovasc Res; 1997 Aug; 35(2):256-72. PubMed ID: 9349389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure.
    Rauch U; Schulze K; Witzenbichler B; Schultheiss HP
    Circ Res; 1994 Oct; 75(4):760-9. PubMed ID: 7923621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cellular sequelae of myocardial ischemia].
    Richardt G; Tölg R
    Z Kardiol; 1997; 86 Suppl 1():23-32. PubMed ID: 9173719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Modeling of disturbances in electrical and mechanical function of cardiomyocytes under acute ischemia].
    Vikulova NA; Vasil'eva AD; Zamaraev DÉ; Solov'eva OÉ; Markhasin VS
    Biofizika; 2014; 59(5):973-82. PubMed ID: 25730982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of cardiac ATP-sensitive K+ channels induced by angiotensin II type 1 receptor antagonist on metabolism, contraction and relaxation in ischemia-reperfused rabbit heart.
    Kawabata H; Ryomoto T; Ishikawa K
    Jpn Circ J; 2001 May; 65(5):451-6. PubMed ID: 11348052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic changes during ischaemia and their role in contractile failure in isolated ferret hearts.
    Elliott AC; Smith GL; Eisner DA; Allen DG
    J Physiol; 1992 Aug; 454():467-90. PubMed ID: 1474498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ischemic preconditioning on ischemia-induced contractile failure and accumulation of extracellular H+ and K+.
    Mitani A; Yasui H; Tokunaga K
    Jpn Circ J; 1994 Dec; 58(12):894-902. PubMed ID: 7699736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current.
    Ferrero JM; Sáiz J; Ferrero JM; Thakor NV
    Circ Res; 1996 Aug; 79(2):208-21. PubMed ID: 8755997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hibernation, stunning, ischemic preconditioning--new paradigms in coronary disease?].
    Heusch G
    Z Kardiol; 1992 Nov; 81(11):596-609. PubMed ID: 1471397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation between cellular K+ loss, reduction in repolarization time, and tissue ATP levels during myocardial hypoxia and ischemia.
    Yan GX; Yamada KA; Kléber AG; McHowat J; Corr PB
    Circ Res; 1993 Mar; 72(3):560-70. PubMed ID: 8431984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of early contractile failure of isolated rat ventricular myocytes subjected to complete metabolic inhibition.
    Lederer WJ; Nichols CG; Smith GL
    J Physiol; 1989 Jun; 413():329-49. PubMed ID: 2600854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.