BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 7743129)

  • 1. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase.
    Doublié S; Bricogne G; Gilmore C; Carter CW
    Structure; 1995 Jan; 3(1):17-31. PubMed ID: 7743129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations.
    Retailleau P; Huang X; Yin Y; Hu M; Weinreb V; Vachette P; Vonrhein C; Bricogne G; Roversi P; Ilyin V; Carter CW
    J Mol Biol; 2003 Jan; 325(1):39-63. PubMed ID: 12473451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.
    Dong X; Zhou M; Zhong C; Yang B; Shen N; Ding J
    Nucleic Acids Res; 2010 Mar; 38(4):1401-12. PubMed ID: 19942682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5' tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases.
    Retailleau P; Weinreb V; Hu M; Carter CW
    J Mol Biol; 2007 May; 369(1):108-28. PubMed ID: 17428498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis.
    Buddha MR; Crane BR
    J Biol Chem; 2005 Sep; 280(36):31965-73. PubMed ID: 15998643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site.
    Ilyin VA; Temple B; Hu M; Li G; Yin Y; Vachette P; Carter CW
    Protein Sci; 2000 Feb; 9(2):218-31. PubMed ID: 10716174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains.
    Yang XL; Otero FJ; Skene RJ; McRee DE; Schimmel P; Ribas de Pouplana L
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15376-80. PubMed ID: 14671330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase.
    Kobayashi T; Takimura T; Sekine R; Kelly VP; Kamata K; Sakamoto K; Nishimura S; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):105-17. PubMed ID: 15663931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity.
    Yu Y; Liu Y; Shen N; Xu X; Xu F; Jia J; Jin Y; Arnold E; Ding J
    J Biol Chem; 2004 Feb; 279(9):8378-88. PubMed ID: 14660560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a human aminoacyl-tRNA synthetase cytokine.
    Yang XL; Skene RJ; McRee DE; Schimmel P
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15369-74. PubMed ID: 12427973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of the anticodon arm binding domain of Bacillus stearothermophilus Tyrosyl-tRNA synthetase.
    Guijarro JI; Pintar A; Prochnicka-Chalufour A; Guez V; Gilquin B; Bedouelle H; Delepierre M
    Structure; 2002 Mar; 10(3):311-7. PubMed ID: 12005430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs.
    Arakaki TL; Carter M; Napuli AJ; Verlinde CL; Fan E; Zucker F; Buckner FS; Van Voorhis WC; Hol WG; Merritt EA
    J Struct Biol; 2010 Aug; 171(2):238-43. PubMed ID: 20438846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancient adaptation of the active site of tryptophanyl-tRNA synthetase for tryptophan binding.
    Praetorius-Ibba M; Stange-Thomann N; Kitabatake M; Ali K; Söll I; Carter CW; Ibba M; Söll D
    Biochemistry; 2000 Oct; 39(43):13136-43. PubMed ID: 11052665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of tyrosyl-tRNA synthetases from Archaea.
    Kuratani M; Sakai H; Takahashi M; Yanagisawa T; Kobayashi T; Murayama K; Chen L; Liu ZJ; Wang BC; Kuroishi C; Kuramitsu S; Terada T; Bessho Y; Shirouzu M; Sekine S; Yokoyama S
    J Mol Biol; 2006 Jan; 355(3):395-408. PubMed ID: 16325203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.
    Merritt EA; Arakaki TL; Gillespie R; Napuli AJ; Kim JE; Buckner FS; Van Voorhis WC; Verlinde CL; Fan E; Zucker F; Hol WG
    Mol Biochem Parasitol; 2011 May; 177(1):20-8. PubMed ID: 21255615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases.
    Wakasugi K; Yokosawa T
    Enzymes; 2020; 48():207-242. PubMed ID: 33837705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of two human tRNA synthetases used in cell signaling.
    Yang XL; Schimmel P; Ewalt KL
    Trends Biochem Sci; 2004 May; 29(5):250-6. PubMed ID: 15130561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer.
    Larson ET; Kim JE; Castaneda LJ; Napuli AJ; Zhang Z; Fan E; Zucker FH; Verlinde CL; Buckner FS; Van Voorhis WC; Hol WG; Merritt EA
    J Mol Biol; 2011 Jun; 409(2):159-76. PubMed ID: 21420975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.