These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7743638)

  • 1. Alterations in intracellular calcium chelation reproduce developmental differences in repetitive firing and afterhyperpolarizations in rat neocortical neurons.
    Lorenzon NM; Foehring RC
    Brain Res Dev Brain Res; 1995 Feb; 84(2):192-203. PubMed ID: 7743638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons.
    Schwindt PC; Spain WJ; Crill WE
    Neuroscience; 1992; 47(3):571-8. PubMed ID: 1316566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ontogeny of repetitive firing and its modulation by norepinephrine in rat neocortical neurons.
    Lorenzon NM; Foehring RC
    Brain Res Dev Brain Res; 1993 Jun; 73(2):213-23. PubMed ID: 8394788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons.
    Lorenzon NM; Foehring RC
    J Neurophysiol; 1992 Feb; 67(2):350-63. PubMed ID: 1373765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons.
    Brumberg JC; Nowak LG; McCormick DA
    J Neurosci; 2000 Jul; 20(13):4829-43. PubMed ID: 10864940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices.
    Zhang L; Pennefather P; Velumian A; Tymianski M; Charlton M; Carlen PL
    J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic mechanisms underlying burst firing of layer III sensorimotor cortical neurons of the cat: an in vitro slice study.
    Nishimura Y; Asahi M; Saitoh K; Kitagawa H; Kumazawa Y; Itoh K; Lin M; Akamine T; Shibuya H; Asahara T; Yamamoto T
    J Neurophysiol; 2001 Aug; 86(2):771-81. PubMed ID: 11495949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons.
    Vatanparast J; Janahmadi M
    Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential control of three after-hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering.
    Velumian AA; Carlen PL
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):201-16. PubMed ID: 10226160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel action of BAPTA series chelators on intrinsic K+ currents in rat hippocampal neurones.
    Lancaster B; Batchelor AM
    J Physiol; 2000 Jan; 522 Pt 2(Pt 2):231-46. PubMed ID: 10639100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy.
    Sanabria ER; Su H; Yaari Y
    J Physiol; 2001 Apr; 532(Pt 1):205-16. PubMed ID: 11283235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postsynaptic and presynaptic effects of the calcium chelator BAPTA on synaptic transmission in rat hippocampal dentate granule neurons.
    Niesen C; Charlton MP; Carlen PL
    Brain Res; 1991 Aug; 555(2):319-25. PubMed ID: 1657301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
    Zhou FM; Hablitz JJ
    J Neurophysiol; 1996 Aug; 76(2):651-67. PubMed ID: 8871189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular injection of a Ca2+ chelator inhibits spike repolarization in hippocampal neurons.
    Storm JF
    Brain Res; 1987 Dec; 435(1-2):387-92. PubMed ID: 3123013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large conductance Ca(2+)-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones.
    Crest M; Gola M
    J Physiol; 1993 Jun; 465():265-87. PubMed ID: 8229836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons.
    Kim SH; Choi YM; Jang JY; Chung S; Kang YK; Park MK
    Pflugers Arch; 2007 Nov; 455(2):309-21. PubMed ID: 17492308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker.
    Bal T; McCormick DA
    J Physiol; 1993 Aug; 468():669-91. PubMed ID: 8254530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons.
    Foehring RC; Schwindt PC; Crill WE
    J Neurophysiol; 1989 Feb; 61(2):245-56. PubMed ID: 2918353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.