BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7743814)

  • 1. DSC measurement of cell suspensions during successive freezing runs: implications for the mechanisms of intracellular ice formation.
    Bryant G
    Cryobiology; 1995 Apr; 32(2):114-28. PubMed ID: 7743814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel.
    Hubel A; Toner M; Cravalho EG; Yarmush ML; Tompkins RG
    Biotechnol Prog; 1991; 7(6):554-9. PubMed ID: 1367755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.
    Mori S; Choi J; Devireddy RV; Bischof JC
    Cryobiology; 2012 Dec; 65(3):242-55. PubMed ID: 22863747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapidly cooled horse spermatozoa: loss of viability is due to osmotic imbalance during thawing, not intracellular ice formation.
    Morris GJ; Faszer K; Green JE; Draper D; Grout BW; Fonseca F
    Theriogenology; 2007 Sep; 68(5):804-12. PubMed ID: 17645937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter.
    Devireddy RV; Raha D; Bischof JC
    Cryobiology; 1998 Mar; 36(2):124-55. PubMed ID: 9527874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water transport and IIF parameters for a connective tissue equivalent.
    Balasubramanian SK; Bischof JC; Hubel A
    Cryobiology; 2006 Feb; 52(1):62-73. PubMed ID: 16343475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starfish oocytes form intracellular ice at unusually high temperatures.
    Köseoğlu M; Eroğlu A; Toner M; Sadler KC
    Cryobiology; 2001 Nov; 43(3):248-59. PubMed ID: 11888218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified differential scanning calorimetry for determination of cell volumetric change during the freezing process.
    Luo D; Han X; He L; Cui X; Cheng S; Lu C; Liu J; Gao D
    Cryo Letters; 2002; 23(4):229-36. PubMed ID: 12391483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates.
    Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ
    Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapidly cooled human sperm: no evidence of intracellular ice formation.
    Morris GJ
    Hum Reprod; 2006 Aug; 21(8):2075-83. PubMed ID: 16613884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-cell contact affects membrane integrity after intracellular freezing.
    Acker JP; McGann LE
    Cryobiology; 2000 Feb; 40(1):54-63. PubMed ID: 10679150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of intracellular ice formation in Drosophila melanogaster embryos.
    Myers SP; Pitt RE; Lynch DV; Steponkus PL
    Cryobiology; 1989 Oct; 26(5):472-84. PubMed ID: 2507228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs.
    Yang CY; Yeh YH; Lee PT; Lin TT
    Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing response and optimal cooling rates for cryopreserving sperm cells of striped bass, Morone saxatilis.
    Thirumala S; Campbell WT; Vicknair MR; Tiersch TR; Devireddy RV
    Theriogenology; 2006 Sep; 66(4):964-73. PubMed ID: 16574210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates.
    Devireddy RV; Fahrig B; Godke RA; Leibo SP
    Mol Reprod Dev; 2004 Apr; 67(4):446-57. PubMed ID: 14991736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane damage occurs during the formation of intracellular ice.
    Acker JP; McGann LE
    Cryo Letters; 2001; 22(4):241-54. PubMed ID: 11788865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryomicroscopic analysis of intracellular ice formation in porcine iliac endothelial cells upon cooling.
    Li Y; Panhwa F; Chen Z; Yuan F; Ji X; Hu P; Zhao G
    Cryo Letters; 2017; 38(4):315-320. PubMed ID: 29734433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation.
    Liu J; Zieger MA; Lakey JR; Woods EJ; Critser JK
    Cryobiology; 1997 Aug; 35(1):1-13. PubMed ID: 9245505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innocuous intracellular ice improves survival of frozen cells.
    Acker JP; McGann LE
    Cell Transplant; 2002; 11(6):563-71. PubMed ID: 12428746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion controlled ice growth with soft impingement inside biological cells during freezing.
    Chen C; Li W
    Cryo Letters; 2008; 29(5):371-81. PubMed ID: 18946551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.