These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7744063)

  • 1. Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells.
    Schuster R; Holzhütter HG
    Eur J Biochem; 1995 Apr; 229(2):403-18. PubMed ID: 7744063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolytic anemias due to erythrocyte enzyme deficiencies.
    Jacobasch G; Rapoport SM
    Mol Aspects Med; 1996 Apr; 17(2):143-70. PubMed ID: 8813716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The generalized flux-minimization method and its application to metabolic networks affected by enzyme deficiencies.
    Holzhütter HG
    Biosystems; 2006; 83(2-3):98-107. PubMed ID: 16229937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic pathway analysis of enzyme-deficient human red blood cells.
    Cakir T; Tacer CS; Ulgen KO
    Biosystems; 2004 Dec; 78(1-3):49-67. PubMed ID: 15555758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red cell enzyme deficiencies as non-disease.
    Beutler E
    Biomed Biochim Acta; 1983; 42(11-12):S234-41. PubMed ID: 6232925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of reduced metabolic networks.
    Holzhütter S; Holzhütter HG
    Chembiochem; 2004 Oct; 5(10):1401-22. PubMed ID: 15457535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The energy metabolism of pyruvate kinase deficient red blood cells.
    Jacobasch G; Holzhütter H; Bisdorf A
    Biomed Biochim Acta; 1983; 42(11-12):S268-72. PubMed ID: 6675701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic homeostasis in the human erythrocyte: in silico analysis.
    de Atauri P; Ramírez MJ; Kuchel PW; Carreras J; Cascante M
    Biosystems; 2006; 83(2-3):118-24. PubMed ID: 16236423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modelling of energy and redox metabolism of G6PD-deficient erythrocytes.
    Schuster R; Jacobasch G; Holzhütter H
    Biomed Biochim Acta; 1990; 49(2-3):S160-5. PubMed ID: 2386502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.
    Holzhütter HG
    Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triosephosphate isomerase deficiency: predictions and facts.
    Orosz F; Vértessy BG; Hollán S; Horányi M; Ovádi J
    J Theor Biol; 1996 Oct; 182(3):437-47. PubMed ID: 8944178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NTP Toxicology and Carcinogenesis Studies of Coumarin (CAS No. 91-64-5) in F344/N Rats and B6C3F1 Mice (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1993 Sep; 422():1-340. PubMed ID: 12616289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions.
    Werner A; Heinrich R
    Biomed Biochim Acta; 1985; 44(2):185-212. PubMed ID: 4004830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors].
    Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM
    Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Red cell system and selected red cell enzymes in men occupationally exposed to mercury vapours].
    Zabiński Z; Rutowski J; Moszczyński P; Dabrowski Z
    Przegl Lek; 2006; 63 Suppl 7():74-83. PubMed ID: 17784549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of enzymopathies in the human red blood cells by constraint-based stoichiometric modeling approaches.
    Durmuş Tekir S; Cakir T; Ulgen KO
    Comput Biol Chem; 2006 Oct; 30(5):327-38. PubMed ID: 16987707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regulatory characteristics of the metabolic systems and the stabilization of the relative concentrations of ATP and reduced glutathione in human erythrocytes].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Piruzian LA; Pichugin AV
    Izv Akad Nauk SSSR Biol; 1982; (3):406-18. PubMed ID: 7096778
    [No Abstract]   [Full Text] [Related]  

  • 18. Erythrocyte pyruvate kinase deficiency. The influence of physiologically important metabolites on the function of normal and defective enzymes.
    Lakomek M; Winkler H; Pekrun A; Krüger N; Sander M; Huppke P; Schröter W
    Enzyme Protein; 1994-1995; 48(3):149-63. PubMed ID: 8589802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV; Kholodenko BN
    Biofizika; 1979; 24(6):1048-53. PubMed ID: 159725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic manipulation of key glycolytic enzymes: a novel proposal for the maintenance of red cell 2,3-DPG and ATP levels during storage.
    Vora S
    Biomed Biochim Acta; 1987; 46(2-3):S285-9. PubMed ID: 3593307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.