These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7744554)

  • 1. Effects of long-term administration of antidepressants on septal driving of hippocampal RSA.
    Zhu XO; McNaughton N
    Int J Neurosci; 1994 Nov; 79(1-2):91-8. PubMed ID: 7744554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the acute effects of a tricyclic and a MAOI antidepressant on septal driving of hippocampal rhythmical slow activity.
    Zhu XO; McNaughton N
    Psychopharmacology (Berl); 1994 Mar; 114(2):337-44. PubMed ID: 7838927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of long-term administration of phenelzine on reticular-elicited hippocampal rhythmical slow activity.
    Zhu XO; McNaughton N
    Neurosci Res; 1995 Feb; 21(4):311-6. PubMed ID: 7777221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of long-term administration of imipramine on reticular-elicited hippocampal rhythmical slow activity.
    Zhu XO; McNaughton N
    Psychopharmacology (Berl); 1991; 105(3):433-8. PubMed ID: 1798837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of serotonin depletion with anxiolytics and antidepressants on reticular-elicited hippocampal RSA.
    Zhu XO; McNaughton N
    Neuropharmacology; 1994 Dec; 33(12):1597-605. PubMed ID: 7760982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal changes with long-term administration of anxiolytics on septal driving of hippocampal rhythmical slow activity.
    Zhu XO; McNaughton N
    Psychopharmacology (Berl); 1995 Mar; 118(1):93-100. PubMed ID: 7597127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of long-term administration of anxiolytics on reticular-elicited hippocampal rhythmical slow activity.
    Zhu XO; McNaughton N
    Neuropharmacology; 1991 Oct; 30(10):1095-9. PubMed ID: 1684647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common effects of chronically administered antipanic drugs on brainstem GABA(A) receptor subunit gene expression.
    Tanay VM; Greenshaw AJ; Baker GB; Bateson AN
    Mol Psychiatry; 2001 Jul; 6(4):404-12. PubMed ID: 11443524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of imipramine and phenelzine on corticosteroid receptor gene expression in mouse brain: potential relevance to antidepressant response.
    Heydendael W; Jacobson L
    Brain Res; 2008 Oct; 1238():93-107. PubMed ID: 18761333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of chronic administration of antidepressants on the circadian pattern of corticosterone in the rat.
    Gómez F; Graugés P; Martín M; Armario A
    Psychopharmacology (Berl); 1998 Nov; 140(2):127-34. PubMed ID: 9860102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phenelzine and imipramine on the steady-state levels of mRNAs that encode glutamic acid decarboxylase (GAD67 and GAD65), the GABA transporter GAT-1 and GABA transaminase in rat cortex.
    Lai CT; Tanay VA; Charrois GJ; Baker GB; Bateson AN
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Jan; 357(1):32-8. PubMed ID: 9459570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antidepressant drug phenelzine produces antianxiety effects in the plus-maze and increases in rat brain GABA.
    Paslawski T; Treit D; Baker GB; George M; Coutts RT
    Psychopharmacology (Berl); 1996 Sep; 127(1):19-24. PubMed ID: 8880939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-adrenoceptors and antidepressants: possible 2-phenylethylamine mediation of chronic phenelzine effects.
    McManus DJ; Mousseau DD; Paetsch PR; Wishart TB; Greenshaw AJ
    Biol Psychiatry; 1991 Dec; 30(11):1122-30. PubMed ID: 1663791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of acute and chronic administration of the antidepressants, imipramine, phenelzine and mianserin, on the social behaviour of mice.
    Gao B; Cutler MG
    Neuropharmacology; 1994 Jun; 33(6):813-24. PubMed ID: 7936119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of chronic antidepressant treatment on swim stress- and fluoxetine-induced secretion of corticosterone and progesterone.
    Duncan GE; Knapp DJ; Carson SW; Breese GR
    J Pharmacol Exp Ther; 1998 May; 285(2):579-87. PubMed ID: 9580601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fluoxetine on hippocampal rhythmic slow activity and behavioural inhibition.
    Munn RG; McNaughton N
    Behav Pharmacol; 2008 May; 19(3):257-64. PubMed ID: 18469543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurochemically dissimilar anxiolytic drugs have common effects on hippocampal rhythmic slow activity.
    McNaughton N; Coop CF
    Neuropharmacology; 1991 Aug; 30(8):855-63. PubMed ID: 1780042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic and postsynaptic modifications of the serotonin system by long-term administration of antidepressant treatments. An in vivo electrophysiologic study in the rat.
    Chaput Y; de Montigny C; Blier P
    Neuropsychopharmacology; 1991 Dec; 5(4):219-29. PubMed ID: 1839498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex--a possible mechanism of neuroprotection in major depression?
    Michael-Titus AT; Bains S; Jeetle J; Whelpton R
    Neuroscience; 2000; 100(4):681-4. PubMed ID: 11036201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic administration of antipanic drugs alters rat brainstem GABAA receptor subunit mRNA levels.
    Tanay VA; Glencorse TA; Greenshaw AJ; Baker GB; Bateson AN
    Neuropharmacology; 1996; 35(9-10):1475-82. PubMed ID: 9014163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.