These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 7744751)
21. Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Zhang ZY; Maclean D; McNamara DJ; Sawyer TK; Dixon JE Biochemistry; 1994 Mar; 33(8):2285-90. PubMed ID: 7509638 [TBL] [Abstract][Full Text] [Related]
22. The mechanism of the phosphoryl transfer catalyzed by Yersinia protein-tyrosine phosphatase: a computational and isotope effect study. Czyryca PG; Hengge AC Biochim Biophys Acta; 2001 Jun; 1547(2):245-53. PubMed ID: 11410280 [TBL] [Abstract][Full Text] [Related]
23. Nature of the transition state of the protein-tyrosine phosphatase-catalyzed reaction. Hengge AC; Sowa GA; Wu L; Zhang ZY Biochemistry; 1995 Oct; 34(43):13982-7. PubMed ID: 7577995 [TBL] [Abstract][Full Text] [Related]
26. The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase. Denu JM; Zhou G; Guo Y; Dixon JE Biochemistry; 1995 Mar; 34(10):3396-403. PubMed ID: 7880835 [TBL] [Abstract][Full Text] [Related]
31. Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase. Rigas JD; Hoff RH; Rice AE; Hengge AC; Denu JM Biochemistry; 2001 Apr; 40(14):4398-406. PubMed ID: 11284696 [TBL] [Abstract][Full Text] [Related]
32. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme. Legler PM; Massiah MA; Mildvan AS Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023 [TBL] [Abstract][Full Text] [Related]
33. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis. Hengge AC; Denu JM; Dixon JE Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534 [TBL] [Abstract][Full Text] [Related]
34. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase. Markham GD; Bock CL; Schalk-Hihi C Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364 [TBL] [Abstract][Full Text] [Related]
35. Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucan lyase. Lee SS; Yu S; Withers SG Biochemistry; 2003 Nov; 42(44):13081-90. PubMed ID: 14596624 [TBL] [Abstract][Full Text] [Related]
36. Substrate specificity of the protein tyrosine phosphatases. Zhang ZY; Thieme-Sefler AM; Maclean D; McNamara DJ; Dobrusin EM; Sawyer TK; Dixon JE Proc Natl Acad Sci U S A; 1993 May; 90(10):4446-50. PubMed ID: 7685104 [TBL] [Abstract][Full Text] [Related]
37. Impaired transition state complementarity in the hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases. Zhang YL; Hollfelder F; Gordon SJ; Chen L; Keng YF; Wu L; Herschlag D; Zhang ZY Biochemistry; 1999 Sep; 38(37):12111-23. PubMed ID: 10508416 [TBL] [Abstract][Full Text] [Related]
38. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
39. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960 [TBL] [Abstract][Full Text] [Related]