These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7744761)

  • 1. A structural assignment for a stable acetaldehyde-lysine adduct.
    Braun KP; Cody RB; Jones DR; Peterson CM
    J Biol Chem; 1995 May; 270(19):11263-6. PubMed ID: 7744761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable acetaldehyde adducts: structural characterization of acetaldehyde adducts of human hemoglobin N-terminal beta-globin chain peptides.
    Braun KP; Pavlovich JG; Jones DR; Peterson CM
    Alcohol Clin Exp Res; 1997 Feb; 21(1):40-3. PubMed ID: 9046371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterisation of acetaldehyde adducts formed by a synthetic peptide mimicking the N-terminus of the hemoglobin beta-chain under reducing and nonreducing conditions.
    Sillanaukee P; Hurme L; Tuominen J; Ranta E; Nikkari S; Seppä K
    Eur J Biochem; 1996 Aug; 240(1):30-6. PubMed ID: 8797832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical implications of acetaldehyde adducts with hemoglobin.
    Peterson CM; Nguyen LB
    Prog Clin Biol Res; 1985; 183():19-30. PubMed ID: 3901019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase-H2O2-chloride system of phagocytes, covalently modifies epsilon-amino groups of protein lysine residues.
    Hazen SL; Gaut JP; Hsu FF; Crowley JR; d'Avignon A; Heinecke JW
    J Biol Chem; 1997 Jul; 272(27):16990-8. PubMed ID: 9202012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chemistry of acetaldehyde-protein adducts.
    Tuma DJ; Hoffman T; Sorrell MF
    Alcohol Alcohol Suppl; 1991; 1():271-6. PubMed ID: 1845549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or alpha-cyclodextrin.
    Zhang H; Grabenauer M; Bowers MT; Dearden DV
    J Phys Chem A; 2009 Feb; 113(8):1508-17. PubMed ID: 19191519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent binding of acetaldehyde to proteins: participation of lysine residues.
    Tuma DJ; Newman MR; Donohue TM; Sorrell MF
    Alcohol Clin Exp Res; 1987 Dec; 11(6):579-84. PubMed ID: 3124658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, isolation, and characterization of the adduct formed in the reaction of p-hydroxyphenylacetaldehyde with the amino headgroup of phosphatidylethanolamine and phosphatidylserine.
    Hazen SL; Heller J; Hsu FF; d'Avignon A; Heinecke JW
    Chem Res Toxicol; 1999 Jan; 12(1):19-27. PubMed ID: 9894014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of reaction scheme describing malondialdehyde-acetaldehyde-protein adduct formation.
    Tuma DJ; Kearley ML; Thiele GM; Worrall S; Haver A; Klassen LW; Sorrell MF
    Chem Res Toxicol; 2001 Jul; 14(7):822-32. PubMed ID: 11453728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of a new nonfluorescent malondialdehyde-acetaldehyde-protein adduct by 13C NMR spectroscopy.
    Kearley ML; Patel A; Chien J; Tuma DJ
    Chem Res Toxicol; 1999 Jan; 12(1):100-5. PubMed ID: 9894024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of a new advanced glycation endproduct of dehydroascorbic acid and lysine.
    Argirov OK; Lin B; Olesen P; Ortwerth BJ
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):235-44. PubMed ID: 12595094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substoichiometric inhibition of microtubule formation by acetaldehyde-tubulin adducts.
    Smith SL; Jennett RB; Sorrell MF; Tuma DJ
    Biochem Pharmacol; 1992 Jul; 44(1):65-72. PubMed ID: 1632840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetaldehyde and microtubules.
    Tuma DJ; Smith SL; Sorrell MF
    Ann N Y Acad Sci; 1991; 625():786-92. PubMed ID: 2058934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of lysine adducts with 16 alpha-hydroxyestrone and cortisol.
    Bucala R; Ulrich PC; Chait BT; Bencsath FA; Cerami A
    J Steroid Biochem; 1986 Jul; 25(1):127-33. PubMed ID: 3091937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation and stability of imidazolidinone adducts from acetaldehyde and model peptides. A kinetic study with implications for protein modification in alcohol abuse.
    Fowles LF; Beck E; Worrall S; Shanley BC; de Jersey J
    Biochem Pharmacol; 1996 May; 51(10):1259-67. PubMed ID: 8787540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the reaction of acetaldehyde with deoxynucleosides.
    Vaca CE; Fang JL; Schweda EK
    Chem Biol Interact; 1995 Oct; 98(1):51-67. PubMed ID: 7586051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of DNA adducts of acetaldehyde.
    Wang M; McIntee EJ; Cheng G; Shi Y; Villalta PW; Hecht SS
    Chem Res Toxicol; 2000 Nov; 13(11):1149-57. PubMed ID: 11087437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino-acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions.
    Hazen SL; Gaut JP; Crowley JR; Hsu FF; Heinecke JW
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):693-9. PubMed ID: 11104675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional consequences of acetaldehyde binding to proteins.
    Tuma DJ; Sorrell MF
    Alcohol Alcohol Suppl; 1987; 1():61-6. PubMed ID: 3122776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.