BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 7744964)

  • 1. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing.
    Cockell M; Palladino F; Laroche T; Kyrion G; Liu C; Lustig AJ; Gasser SM
    J Cell Biol; 1995 May; 129(4):909-24. PubMed ID: 7744964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres.
    Palladino F; Laroche T; Gilson E; Axelrod A; Pillus L; Gasser SM
    Cell; 1993 Nov; 75(3):543-55. PubMed ID: 8221893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1.
    Moretti P; Freeman K; Coodly L; Shore D
    Genes Dev; 1994 Oct; 8(19):2257-69. PubMed ID: 7958893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast.
    Strahl-Bolsinger S; Hecht A; Luo K; Grunstein M
    Genes Dev; 1997 Jan; 11(1):83-93. PubMed ID: 9000052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast.
    Hecht A; Laroche T; Strahl-Bolsinger S; Gasser SM; Grunstein M
    Cell; 1995 Feb; 80(4):583-92. PubMed ID: 7867066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast.
    Luo K; Vega-Palas MA; Grunstein M
    Genes Dev; 2002 Jun; 16(12):1528-39. PubMed ID: 12080091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin.
    Hecht A; Strahl-Bolsinger S; Grunstein M
    Nature; 1996 Sep; 383(6595):92-6. PubMed ID: 8779721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae.
    Gotta M; Laroche T; Formenton A; Maillet L; Scherthan H; Gasser SM
    J Cell Biol; 1996 Sep; 134(6):1349-63. PubMed ID: 8830766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning.
    Andrulis ED; Zappulla DC; Ansari A; Perrod S; Laiosa CV; Gartenberg MR; Sternglanz R
    Mol Cell Biol; 2002 Dec; 22(23):8292-301. PubMed ID: 12417731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3.
    Moazed D; Kistler A; Axelrod A; Rine J; Johnson AD
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2186-91. PubMed ID: 9122169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants.
    Feeser EA; Wolberger C
    J Mol Biol; 2008 Jul; 380(3):520-31. PubMed ID: 18538788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering heterochromatin: Sir3 promotes telomere clustering independently of silencing in yeast.
    Ruault M; De Meyer A; Loïodice I; Taddei A
    J Cell Biol; 2011 Feb; 192(3):417-31. PubMed ID: 21300849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis defines a C-terminal tail domain of RAP1 essential for Telomeric silencing in Saccharomyces cerevisiae.
    Liu C; Mao X; Lustig AJ
    Genetics; 1994 Dec; 138(4):1025-40. PubMed ID: 7896088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres.
    Laroche T; Martin SG; Gotta M; Gorham HC; Pryde FE; Louis EJ; Gasser SM
    Curr Biol; 1998 May; 8(11):653-6. PubMed ID: 9635192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in
    Samel A; Rudner A; Ehrenhofer-Murray AE
    G3 (Bethesda); 2017 Apr; 7(4):1117-1126. PubMed ID: 28188183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of Sir2p: the nucleolus as a compartment for silent information regulators.
    Gotta M; Strahl-Bolsinger S; Renauld H; Laroche T; Kennedy BK; Grunstein M; Gasser SM
    EMBO J; 1997 Jun; 16(11):3243-55. PubMed ID: 9214640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of yeast telomeres and silencing proteins through the cell cycle.
    Laroche T; Martin SG; Tsai-Pflugfelder M; Gasser SM
    J Struct Biol; 2000 Apr; 129(2-3):159-74. PubMed ID: 10806066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular model for telomeric heterochromatin in yeast.
    Grunstein M
    Curr Opin Cell Biol; 1997 Jun; 9(3):383-7. PubMed ID: 9159071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression.
    Maillet L; Boscheron C; Gotta M; Marcand S; Gilson E; Gasser SM
    Genes Dev; 1996 Jul; 10(14):1796-811. PubMed ID: 8698239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast.
    Buck SW; Shore D
    Genes Dev; 1995 Feb; 9(3):370-84. PubMed ID: 7867933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.