BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7745447)

  • 1. A new pediatric respiratory monitor that accurately measures imposed work of breathing: a validation study.
    Berman LS; Banner MJ; Blanch PB; Widner LR
    J Clin Monit; 1995 Jan; 11(1):14-7. PubMed ID: 7745447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreasing imposed work of the breathing apparatus to zero using pressure-support ventilation.
    Banner MJ; Kirby RR; Blanch PB; Layon AJ
    Crit Care Med; 1993 Sep; 21(9):1333-8. PubMed ID: 8370298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracheal pressure triggering a demand-flow continuous positive airway pressure system decreases patient work of breathing.
    Messinger G; Banner MJ
    Crit Care Med; 1996 Nov; 24(11):1829-34. PubMed ID: 8917033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new respiratory monitor that enables accurate measurement of work of breathing: a validation study.
    Blanch PB; Banner MJ
    Respir Care; 1994 Sep; 39(9):897-905. PubMed ID: 10146116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imposed work of breathing and methods of triggering a demand-flow, continuous positive airway pressure system.
    Banner MJ; Blanch PB; Kirby RR
    Crit Care Med; 1993 Feb; 21(2):183-90. PubMed ID: 8428467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using tracheal pressure to trigger the ventilator and control airway pressure during continuous positive airway pressure decreases work of breathing.
    Messinger G; Banner MJ; Blanch PB; Layon AJ
    Chest; 1995 Aug; 108(2):509-14. PubMed ID: 7634891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bicore pulmonary monitor. A device to assess the work of breathing while weaning from mechanical ventilation.
    Petros AJ; Lamond CT; Bennett D
    Anaesthesia; 1993 Nov; 48(11):985-8. PubMed ID: 8250198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of disposable or interchangeable positive end-expiratory pressure valves on work of breathing during the application of continuous positive airway pressure.
    Kacmarek RM; Mang H; Barker N; Cycyk-Chapman MC
    Crit Care Med; 1994 Aug; 22(8):1219-26. PubMed ID: 8045140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated imposed work of breathing masquerading as ventilator weaning intolerance.
    Kirton OC; DeHaven CB; Morgan JP; Windsor J; Civetta JM
    Chest; 1995 Oct; 108(4):1021-5. PubMed ID: 7555113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partially and totally unloading respiratory muscles based on real-time measurements of work of breathing. A clinical approach.
    Banner MJ; Kirby RR; Gabrielli A; Blanch PB; Layon AJ
    Chest; 1994 Dec; 106(6):1835-42. PubMed ID: 7988210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracheal pressure control provides automatic and variable inspiratory pressure assist to decrease the imposed resistive work of breathing.
    Banner MJ; Blanch PB; Gabrielli A
    Crit Care Med; 2002 May; 30(5):1106-11. PubMed ID: 12006809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictors of extubation success and failure in mechanically ventilated infants and children.
    Khan N; Brown A; Venkataraman ST
    Crit Care Med; 1996 Sep; 24(9):1568-79. PubMed ID: 8797633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site of pressure measurement during spontaneous breathing with continuous positive airway pressure: effect on calculating imposed work of breathing.
    Banner MJ; Kirby RR; Blanch PB
    Crit Care Med; 1992 Apr; 20(4):528-33. PubMed ID: 1559368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologic effects of transtracheal open ventilation in postextubation patients with high upper airway resistance.
    Uchiyama A; Mori T; Imanaka H; Nishimura M
    Crit Care Med; 2001 Sep; 29(9):1694-700. PubMed ID: 11546967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Components of the work of breathing and implications for monitoring ventilator-dependent patients.
    Banner MJ; Jaeger MJ; Kirby RR
    Crit Care Med; 1994 Mar; 22(3):515-23. PubMed ID: 8125004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Work of breathing for cuffed and uncuffed pediatric endotracheal tubes in an in vitro lung model setting.
    Thomas J; Weiss M; Cannizzaro V; Both CP; Schmidt AR
    Paediatr Anaesth; 2018 Sep; 28(9):780-787. PubMed ID: 30004614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous Breathing and Imposed Work During Pediatric Mechanical Ventilation: A Bench Study.
    van Dijk J; Blokpoel RGT; Koopman AA; Brandsema R; Newth CJL; Kneyber MCJ
    Pediatr Crit Care Med; 2020 Jul; 21(7):e449-e455. PubMed ID: 32427436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breathing frequency and pattern are poor predictors of work of breathing in patients receiving pressure support ventilation.
    Banner MJ; Kirby RR; Kirton OC; DeHaven CB; Blanch PB
    Chest; 1995 Nov; 108(5):1338-44. PubMed ID: 7587438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome.
    Kallet RH; Campbell AR; Dicker RA; Katz JA; Mackersie RC
    Crit Care Med; 2006 Jan; 34(1):8-14. PubMed ID: 16374150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P0.1 is a useful parameter in setting the level of pressure support ventilation.
    Alberti A; Gallo F; Fongaro A; Valenti S; Rossi A
    Intensive Care Med; 1995 Jul; 21(7):547-53. PubMed ID: 7593895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.