These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 7746280)
1. Catalytic properties of NAD(P)H:quinone acceptor oxidoreductase: study involving mouse, rat, human, and mouse-rat chimeric enzymes. Chen S; Knox R; Lewis AD; Friedlos F; Workman P; Deng PS; Fung M; Ebenstein D; Wu K; Tsai TM Mol Pharmacol; 1995 May; 47(5):934-9. PubMed ID: 7746280 [TBL] [Abstract][Full Text] [Related]
2. Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase. Wu K; Knox R; Sun XZ; Joseph P; Jaiswal AK; Zhang D; Deng PS; Chen S Arch Biochem Biophys; 1997 Nov; 347(2):221-8. PubMed ID: 9367528 [TBL] [Abstract][Full Text] [Related]
3. Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase (DT-diaphorase) as a target for bioreductive antitumor quinones: quinone cytotoxicity and selectivity in human lung and breast cancer cell lines. Beall HD; Murphy AM; Siegel D; Hargreaves RH; Butler J; Ross D Mol Pharmacol; 1995 Sep; 48(3):499-504. PubMed ID: 7565631 [TBL] [Abstract][Full Text] [Related]
4. The role of NAD(P)H: quinone reductase (EC 1.6.99.2, DT-diaphorase) in the reductive bioactivation of the novel indoloquinone antitumor agent EO9. Walton MI; Smith PJ; Workman P Cancer Commun; 1991 Jul; 3(7):199-206. PubMed ID: 1714284 [TBL] [Abstract][Full Text] [Related]
5. Demonstration of the activation of prodrug CB 1954 using human DT-diaphorase mutant Q104Y-transfected MDA-MB-231 cells and mouse xenograft model. Wu K; Eng E; Knox R; Chen S Arch Biochem Biophys; 2001 Jan; 385(1):203-8. PubMed ID: 11361019 [TBL] [Abstract][Full Text] [Related]
6. Bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by human NAD(P)H quinone oxidoreductase 2: a novel co-substrate-mediated antitumor prodrug therapy. Knox RJ; Jenkins TC; Hobbs SM; Chen S; Melton RG; Burke PJ Cancer Res; 2000 Aug; 60(15):4179-86. PubMed ID: 10945627 [TBL] [Abstract][Full Text] [Related]
7. Mouse liver NAD(P)H:quinone acceptor oxidoreductase: protein sequence analysis by tandem mass spectrometry, cDNA cloning, expression in Escherichia coli, and enzyme activity analysis. Chen S; Clarke PE; Martino PA; Deng PS; Yeh CH; Lee TD; Prochaska HJ; Talalay P Protein Sci; 1994 Aug; 3(8):1296-304. PubMed ID: 7527260 [TBL] [Abstract][Full Text] [Related]
8. Advances in research on DT-diaphorase--catalytic properties, regulation of activity and significance in the detoxication of foreign compounds. Horie S Kitasato Arch Exp Med; 1990 Apr; 63(1):11-30. PubMed ID: 2125671 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of bioreductive antitumor compounds by purified rat and human DT-diaphorases. Beall HD; Mulcahy RT; Siegel D; Traver RD; Gibson NW; Ross D Cancer Res; 1994 Jun; 54(12):3196-201. PubMed ID: 8205540 [TBL] [Abstract][Full Text] [Related]
10. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase. Fourie J; Oleschuk CJ; Guziec F; Guziec L; Fiterman DJ; Monterrosa C; Begleiter A Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423 [TBL] [Abstract][Full Text] [Related]
11. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K; Ma Q; Lu AY; Yang CS Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis of the catalytic differences among DT-diaphorase of human, rat, and mouse. Chen S; Knox R; Wu K; Deng PS; Zhou D; Bianchet MA; Amzel LM J Biol Chem; 1997 Jan; 272(3):1437-9. PubMed ID: 8999809 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of DT-diaphorase (NAD(P)H:quinone oxidoreductase, EC 1.6.99.2) by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and flavone-8-acetic acid (FAA): implications for bioreductive drug development. Phillips RM Biochem Pharmacol; 1999 Jul; 58(2):303-10. PubMed ID: 10423172 [TBL] [Abstract][Full Text] [Related]
14. Reductase enzyme expression across the National Cancer Institute Tumor cell line panel: correlation with sensitivity to mitomycin C and EO9. Fitzsimmons SA; Workman P; Grever M; Paull K; Camalier R; Lewis AD J Natl Cancer Inst; 1996 Mar; 88(5):259-69. PubMed ID: 8614004 [TBL] [Abstract][Full Text] [Related]
15. Suggested mechanism for the modulation of the activity of NAD(P)H:quinone acceptor oxidoreductase (DT-diaphorase) by menadione: interpretation of the effect of menadione on 5'-[p-(Fluorosulfonyl)benzoyl]adenosine labeling of rat liver NAD(P)H:quinone acceptor oxidoreductase. Chen S; Liu XF Mol Pharmacol; 1992 Sep; 42(3):545-48. PubMed ID: 1406605 [TBL] [Abstract][Full Text] [Related]
16. In vivo exposure of Dreissena polymorpha mussels to the quinones menadione and lawsone: menadione is more toxic to mussels than lawsone. Osman AM; Rotteveel S; den Besten PJ; van Noort PC J Appl Toxicol; 2004; 24(2):135-41. PubMed ID: 15052609 [TBL] [Abstract][Full Text] [Related]
17. Bioreductive activation of a series of analogues of 5-aziridinyl-3-hydroxymethyl-1-methyl-2-[1H-indole-4, 7-dione] prop-beta-en-alpha-ol (EO9) by human DT-diaphorase. Phillips RM Biochem Pharmacol; 1996 Dec; 52(11):1711-8. PubMed ID: 8986133 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans. Sedlácek V; van Spanning RJ; Kucera I Arch Biochem Biophys; 2009 Mar; 483(1):29-36. PubMed ID: 19138657 [TBL] [Abstract][Full Text] [Related]
19. DT-diaphorase: possible roles in cancer chemotherapy and carcinogenesis. Rauth AM; Goldberg Z; Misra V Oncol Res; 1997; 9(6-7):339-49. PubMed ID: 9406240 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of NAD(P)H:quinone acceptor oxidoreductase by flavones: a structure-activity study. Chen S; Hwang J; Deng PS Arch Biochem Biophys; 1993 Apr; 302(1):72-7. PubMed ID: 8470908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]