These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 7746292)

  • 21. In situ TEM and SEM studies on the antimicrobial activity and prevention of Candida albicans biofilm by Cassia spectabilis extract.
    Sangetha S; Zuraini Z; Suryani S; Sasidharan S
    Micron; 2009 Jun; 40(4):439-43. PubMed ID: 19261482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological changes of Candida albicans induced by saperconazole.
    Montès B; Mallié M; Jouvert S; Bastide JM
    Mycoses; 1991; 34(7-8):287-92. PubMed ID: 1803228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ SEM, TEM and AFM studies of the antimicrobial activity of lemon grass oil in liquid and vapour phase against Candida albicans.
    Tyagi AK; Malik A
    Micron; 2010 Oct; 41(7):797-805. PubMed ID: 20541428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparisons of the susceptibilities of planktonic and adherent Candida albicans to antifungal agents: a modified XTT tetrazolium assay using synchronised C. albicans cells.
    Hawser S
    J Med Vet Mycol; 1996; 34(2):149-52. PubMed ID: 8732362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis, morphology and antifungal activity of nano-particulated amphotericin-B, ketoconazole and thymoquinone against Candida albicans yeasts and Candida biofilm.
    Randhawa MA; Gondal MA; Al-Zahrani AH; Rashid SG; Ali A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(2):119-24. PubMed ID: 25560257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of fluconazole at subinhibitory concentrations on cell surface hydrophobicity and phagocytosis of Candida albicans.
    Hazen KC; Mandell G; Coleman E; Wu G
    FEMS Microbiol Lett; 2000 Feb; 183(1):89-94. PubMed ID: 10650207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of the differentiation of Candida albicans by the chelator 1,10-phenanthroline.
    Bedell GW; Anderson RV
    Mycopathologia; 1985 Dec; 92(3):161-7. PubMed ID: 3937057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased in vitro sensitivity of Candida albicans to amphotericin B when grown in mixed culture with Escherichia coli.
    Mathieu LG; Dube D; Lebrun M
    Can J Microbiol; 1978 Dec; 24(12):1482-9. PubMed ID: 371767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of limited exposure to antifungal agents on the germ tube formation of oral Candida albicans.
    Ellepola AN; Samaranayake LP
    J Oral Pathol Med; 1998 May; 27(5):213-9. PubMed ID: 9682984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form.
    Tanaka WT; Nakao N; Mikami T; Matsumoto T
    Biochem Biophys Res Commun; 1997 Mar; 232(2):350-3. PubMed ID: 9125179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructural changes produced by ketoconazole in the yeast-like phase of Paracoccidioides brasiliensis and Histoplasma capsulatum.
    Negroni de Bonvehi MB; Borgers M; Negroni R
    Mycopathologia; 1981 May; 74(2):113-8. PubMed ID: 6264302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fungal morphology after treatment with itraconazole as a single oral dose in experimental vaginal candidosis in rats.
    Jansen TM; Van de Ven MA; Borgers MJ; Odds FC; Van Cutsem JM
    Am J Obstet Gynecol; 1991 Nov; 165(5 Pt 1):1552-7. PubMed ID: 1659787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphological studies of N-acetylglucosamine induced germ tube formation by Candida albicans.
    Hubbard MJ; Sullivan PA; Shepherd MG
    Can J Microbiol; 1985 Aug; 31(8):696-701. PubMed ID: 3907814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth inhibitory effect of antibiotic tetaine on yeast and mycelial forms of Candida albicans.
    Milewski S; Chmara H; Borowski E
    Arch Microbiol; 1983 Aug; 135(2):130-6. PubMed ID: 6357134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid.
    Chung SC; Kim TI; Ahn CH; Shin J; Oh KB
    FEBS Lett; 2010 Nov; 584(22):4639-45. PubMed ID: 20965180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of imidazole- and triazole-derivative antifungal compounds on the growth and morphological development of Candida albicans hyphae.
    Odds FC; Cockayne A; Hayward J; Abbott AB
    J Gen Microbiol; 1985 Oct; 131(10):2581-9. PubMed ID: 2999296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of diclofenac sodium in the dimorphic transition in Candida albicans.
    Ghalehnoo ZR; Rashki A; Najimi M; Dominguez A
    Microb Pathog; 2010; 48(3-4):110-5. PubMed ID: 20026399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of monensin on dimorphic transition and hyphal growth in Candida albicans.
    Pancaldi S; Bruni A; Dall'Olio G; Fasulo MP
    Microbios; 1994; 79(320):163-70. PubMed ID: 7968669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrastructure of Candida albicans pleomorphic forms: phase-contrast microscopy, scanning and transmission electron microscopy.
    Staniszewska M; Bondaryk M; Siennicka K; Kurzatkowski W
    Pol J Microbiol; 2012; 61(2):129-35. PubMed ID: 23163212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of a new pyrazolo [3, 4-d]pyrimidine on growth and morphology of Candida albicans.
    Califano A; Poli T; Vannini GL
    Mycopathologia; 1986 Mar; 93(3):189-92. PubMed ID: 3520331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.