These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 7747153)
41. Can Randall's plug composed of calcium oxalate form via the free particle mechanism? Grases F; Söhnel O BMC Urol; 2017 Sep; 17(1):80. PubMed ID: 28886706 [TBL] [Abstract][Full Text] [Related]
42. Mechanisms of stone formation--an overview. Finlayson B; Khan SR; Hackett RL Scan Electron Microsc; 1984; (Pt 3):1419-25. PubMed ID: 6390665 [TBL] [Abstract][Full Text] [Related]
43. Formation of spherulites of calcium phosphate and crystallization of calcium oxalate in gel in a new experimental model of urinary stone formation. Achilles W; Jöckel U; Schaper A; Burk M; Ulshöfer B; Riedmiller H Investig Urol (Berl); 1994; 5():218-21. PubMed ID: 7719309 [No Abstract] [Full Text] [Related]
44. Fine structure of calcium oxalate monohydrate renal calculi. Söhnel O; Grases F Nephron; 1993; 63(2):176-82. PubMed ID: 8450909 [TBL] [Abstract][Full Text] [Related]
45. Enlargement of a lower pole calcium oxalate stone: a theoretical examination of the role of crystal nucleation, growth, and aggregation. Kavanagh JP J Endourol; 1999 Nov; 13(9):605-10. PubMed ID: 10608510 [TBL] [Abstract][Full Text] [Related]
46. Study of the effects of different substances on the early stages of papillary stone formation. Grases F; Garcia-Ferragut L; Costa-Bauzá A; March JG Nephron; 1996; 73(4):561-8. PubMed ID: 8856252 [TBL] [Abstract][Full Text] [Related]
48. Calcium oxalate monohydrate renal calculi. Formation and development mechanism. Söhnel O; Grases F Adv Colloid Interface Sci; 1995 Aug; 59():1-17. PubMed ID: 7576314 [TBL] [Abstract][Full Text] [Related]
49. Ceftriaxone crystallization and its potential role in kidney stone formation. Chutipongtanate S; Thongboonkerd V Biochem Biophys Res Commun; 2011 Mar; 406(3):396-402. PubMed ID: 21329669 [TBL] [Abstract][Full Text] [Related]
51. Histological aspects of the "fixed-particle" model of stone formation: animal studies. Khan SR Urolithiasis; 2017 Feb; 45(1):75-87. PubMed ID: 27896391 [TBL] [Abstract][Full Text] [Related]
52. Characteristics of nanobacteria and their possible role in stone formation. Kajander EO; Ciftcioglu N; Aho K; Garcia-Cuerpo E Urol Res; 2003 Jun; 31(2):47-54. PubMed ID: 12669155 [TBL] [Abstract][Full Text] [Related]
53. Crystal sedimentation and stone formation. Baumann JM; Affolter B; Meyer R Urol Res; 2010 Feb; 38(1):21-7. PubMed ID: 19997724 [TBL] [Abstract][Full Text] [Related]
54. In vitro crystallisation systems for the study of urinary stone formation. Achilles W World J Urol; 1997; 15(4):244-51. PubMed ID: 9280053 [TBL] [Abstract][Full Text] [Related]
55. On mechanism of urate kidney stone formation. Noda S Scan Electron Microsc; 1984; (Pt 4):1801-8. PubMed ID: 6523054 [TBL] [Abstract][Full Text] [Related]
56. Plaque and deposits in nine human stone diseases. Coe FL; Evan AP; Lingeman JE; Worcester EM Urol Res; 2010 Aug; 38(4):239-47. PubMed ID: 20625890 [TBL] [Abstract][Full Text] [Related]
57. How elevated oxalate can promote kidney stone disease: changes at the surface and in the cytosol of renal cells that promote crystal adherence and growth. Scheid CR; Cao LC; Honeyman T; Jonassen JA Front Biosci; 2004 Jan; 9():797-808. PubMed ID: 14766409 [TBL] [Abstract][Full Text] [Related]
58. Protein primary structure correlates with calcium oxalate stone matrix preference. Tian Y; Tirrell M; Davis C; Wesson JA PLoS One; 2021; 16(9):e0257515. PubMed ID: 34555074 [TBL] [Abstract][Full Text] [Related]