These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 7747469)

  • 1. Transcriptional activation by DNA-binding derivatives of HSV-1 VP16 that lack the carboxyl-terminal acidic activation domain.
    Popova B; Bilan P; Xiao P; Faught M; Capone JP
    Virology; 1995 May; 209(1):19-28. PubMed ID: 7747469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The B cell coactivator Bob1 shows DNA sequence-dependent complex formation with Oct-1/Oct-2 factors, leading to differential promoter activation.
    Gstaiger M; Georgiev O; van Leeuwen H; van der Vliet P; Schaffner W
    EMBO J; 1996 Jun; 15(11):2781-90. PubMed ID: 8654375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interference with the assembly of a virus-host transcription complex by peptide competition.
    Haigh A; Greaves R; O'Hare P
    Nature; 1990 Mar; 344(6263):257-9. PubMed ID: 2156166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergism between Tat and VP16 in trans-activation of HIV-1 LTR.
    Ghosh S; Selby MJ; Peterlin BM
    J Mol Biol; 1993 Dec; 234(3):610-9. PubMed ID: 8254663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human immunodeficiency virus type 1 Vpr transactivator: cooperation with promoter-bound activator domains and binding to TFIIB.
    Agostini I; Navarro JM; Rey F; Bouhamdan M; Spire B; Vigne R; Sire J
    J Mol Biol; 1996 Sep; 261(5):599-606. PubMed ID: 8800208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an N-terminal transcriptional activation domain within Brn3b/POU4f2.
    Martin SE; Mu X; Klein WH
    Differentiation; 2005 Feb; 73(1):18-27. PubMed ID: 15733064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminus of the B cell activator Oct-2 functions as an activation domain in yeast.
    Mead J; Elliston K; Mark DF; Ludmerer SW
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1998-2007. PubMed ID: 7811293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal transcriptional activation domain of LZIP comprises two LxxLL motifs and the host cell factor-1 binding motif.
    Luciano RL; Wilson AC
    Proc Natl Acad Sci U S A; 2000 Sep; 97(20):10757-62. PubMed ID: 10984507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single serine residue at position 375 of VP16 is critical for complex assembly with Oct-1 and HCF and is a target of phosphorylation by casein kinase II.
    O'Reilly D; Hanscombe O; O'Hare P
    EMBO J; 1997 May; 16(9):2420-30. PubMed ID: 9171355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the acidic domain of the IE1 regulatory protein from Orgyia pseudotsugata multicapsid nucleopolyhedrovirus.
    Forsythe IJ; Shippam CE; Willis LG; Stewart S; Grigliatti T; Theilmann DA
    Virology; 1998 Dec; 252(1):65-81. PubMed ID: 9875318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast.
    Shim YH; Bonner JJ; Blumenthal T
    J Mol Biol; 1995 Nov; 253(5):665-76. PubMed ID: 7473742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HCF-dependent nuclear import of VP16.
    La Boissière S; Hughes T; O'Hare P
    EMBO J; 1999 Jan; 18(2):480-9. PubMed ID: 9889203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid substitutions in the herpes simplex virus transactivator VP16 uncouple direct protein-protein interaction and DNA binding from complex assembly and transactivation.
    Shaw P; Knez J; Capone JP
    J Biol Chem; 1995 Dec; 270(48):29030-7. PubMed ID: 7499437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bovine herpesvirus alpha gene trans-inducing factor activates transcription by mechanisms different from those of its herpes simplex virus type 1 counterpart VP16.
    Misra V; Walker S; Hayes S; O'Hare P
    J Virol; 1995 Sep; 69(9):5209-16. PubMed ID: 7636962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equid herpesviruses 1 and 4 encode functional homologs of the herpes simplex virus type 1 virion transactivator protein, VP16.
    Purewal AS; Allsopp R; Riggio M; Telford EA; Azam S; Davison AJ; Edington N
    Virology; 1994 Jan; 198(1):385-9. PubMed ID: 8259676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeras of herpes simplex viral VP16 and jun are oncogenic.
    Schuur ER; Parker EJ; Vogt PK
    Cell Growth Differ; 1993 Sep; 4(9):761-8. PubMed ID: 8241024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAL4-VP16 is an unusually potent transcriptional activator.
    Sadowski I; Ma J; Triezenberg S; Ptashne M
    Nature; 1988 Oct; 335(6190):563-4. PubMed ID: 3047590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in determinants required for complex formation and transactivation in related VP16 proteins.
    Grapes M; O'Hare P
    J Virol; 2000 Nov; 74(21):10112-21. PubMed ID: 11024140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target gene identification: target specific transcriptional activation by three murine homeodomain/VP16 hybrid proteins in Saccharomyces cerevisiae.
    Friedman-Einat M; Einat P; Snyder M; Ruddle F
    J Exp Zool; 1996 Feb; 274(3):145-56. PubMed ID: 8882492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16.
    Stern S; Tanaka M; Herr W
    Nature; 1989 Oct; 341(6243):624-30. PubMed ID: 2571937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.