These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7747483)

  • 41. Temperature and pH dependence of the haemolytic activity of influenza virus and of the rotational mobility of the spike glycoproteins.
    Junankar PR; Cherry RJ
    Biochim Biophys Acta; 1986 Jan; 854(2):198-206. PubMed ID: 3942725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. pH-dependent lysis of liposomes by adenovirus.
    Blumenthal R; Seth P; Willingham MC; Pastan I
    Biochemistry; 1986 Apr; 25(8):2231-7. PubMed ID: 3754765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Serologically documented case of congenital chorioretinitis caused by lymphocytic choriomeningitis virus].
    Sheĭnbergas MM; Krichevskaia GI; Vinogradov VL; Kil'chiauskene VV; Katargina LA
    Vestn Oftalmol; 1983; (2):69-70. PubMed ID: 6857924
    [No Abstract]   [Full Text] [Related]  

  • 44. pH Dependence of Zika Membrane Fusion Kinetics Reveals an Off-Pathway State.
    Rawle RJ; Webster ER; Jelen M; Kasson PM; Boxer SG
    ACS Cent Sci; 2018 Nov; 4(11):1503-1510. PubMed ID: 30555902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome.
    Jain A; Govindan R; Berkman A; Luban J; Durham ND; Munro J
    bioRxiv; 2023 Oct; ():. PubMed ID: 36711925
    [TBL] [Abstract][Full Text] [Related]  

  • 46. THE INACTIVATION OF THE VIRUS OF LYMPHOCYTIC CHORIOMENINGITIS BY SOAPS.
    Stock CC; Francis T
    J Exp Med; 1943 Apr; 77(4):323-36. PubMed ID: 19871286
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7.
    Doyle CA; Busey GW; Iobst WH; Kiessling V; Renken C; Doppalapudi H; Stremska ME; Manjegowda MC; Arish M; Wang W; Naphade S; Kennedy J; Bloyet LM; Thompson CE; Rothlauf PW; Stipes EJ; Whelan SPJ; Tamm LK; Kreutzberger AJB; Sun J; Desai BN
    Nat Commun; 2024 Oct; 15(1):8479. PubMed ID: 39353909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of Arenavirus Entry and Replication by the Cell-Intrinsic Restriction Factor ZMPSTE24 Is Enhanced by IFITM Antiviral Activity.
    Stott-Marshall RJ; Foster TL
    Front Microbiol; 2022; 13():840885. PubMed ID: 35283811
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Progress in Anti-Mammarenavirus Drug Development.
    Kim YJ; Venturini V; de la Torre JC
    Viruses; 2021 Jun; 13(7):. PubMed ID: 34206216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Junín Virus Promotes Autophagy To Facilitate the Virus Life Cycle.
    Roldán JS; Candurra NA; Colombo MI; Delgui LR
    J Virol; 2019 Aug; 93(15):. PubMed ID: 31118257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors.
    Brisse ME; Ly H
    Front Immunol; 2019; 10():372. PubMed ID: 30918506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization.
    Bederka LH; Bonhomme CJ; Ling EL; Buchmeier MJ
    mBio; 2014 Oct; 5(6):e02063. PubMed ID: 25352624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Virus entry. Lassa virus entry requires a trigger-induced receptor switch.
    Jae LT; Raaben M; Herbert AS; Kuehne AI; Wirchnianski AS; Soh TK; Stubbs SH; Janssen H; Damme M; Saftig P; Whelan SP; Dye JM; Brummelkamp TR
    Science; 2014 Jun; 344(6191):1506-10. PubMed ID: 24970085
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alterations in immunodominance of Streptococcus mutans AgI/II: lessons learned from immunomodulatory antibodies.
    Robinette RA; Heim KP; Oli MW; Crowley PJ; McArthur WP; Brady LJ
    Vaccine; 2014 Jan; 32(3):375-82. PubMed ID: 24252705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Innate immune response to arenaviral infection: a focus on the highly pathogenic New World hemorrhagic arenaviruses.
    Koma T; Huang C; Kolokoltsova OA; Brasier AR; Paessler S
    J Mol Biol; 2013 Dec; 425(24):4893-903. PubMed ID: 24075870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation.
    Parsy ML; Harlos K; Huiskonen JT; Bowden TA
    J Virol; 2013 Dec; 87(23):13070-5. PubMed ID: 24049182
    [TBL] [Abstract][Full Text] [Related]  

  • 57. LCMV glycosylation modulates viral fitness and cell tropism.
    Bonhomme CJ; Knopp KA; Bederka LH; Angelini MM; Buchmeier MJ
    PLoS One; 2013; 8(1):e53273. PubMed ID: 23308183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Host cell factors as antiviral targets in arenavirus infection.
    Linero FN; Sepúlveda CS; Giovannoni F; Castilla V; García CC; Scolaro LA; Damonte EB
    Viruses; 2012 Sep; 4(9):1569-91. PubMed ID: 23170173
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses.
    Radoshitzky SR; Kuhn JH; de Kok-Mercado F; Jahrling PB; Bavari S
    Expert Opin Drug Discov; 2012 Jul; 7(7):613-32. PubMed ID: 22607481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The curious case of arenavirus entry, and its inhibition.
    Nunberg JH; York J
    Viruses; 2012 Jan; 4(1):83-101. PubMed ID: 22355453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.