These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 7747930)

  • 21. Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria.
    Oppenberg B; Schink B
    Antonie Van Leeuwenhoek; 1990 May; 57(4):205-13. PubMed ID: 2353806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen respiration by desulfovibrio species.
    Cypionka H
    Annu Rev Microbiol; 2000; 54():827-48. PubMed ID: 11018146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and properties of thiosulfate reductase from Desulfovibrio vulgaris, Miyazaki F.
    Aketagawa J; Kobayashi K; Ishimoto M
    J Biochem; 1985 Apr; 97(4):1025-32. PubMed ID: 2993256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane.
    Basen M; Krüger M; Milucka J; Kuever J; Kahnt J; Grundmann O; Meyerdierks A; Widdel F; Shima S
    Environ Microbiol; 2011 May; 13(5):1370-9. PubMed ID: 21392199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of sulfate-reducing bacteria with solid-phase electron acceptors.
    Karnachuk OV; Kurochkina SY; Tuovinen OH
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):482-6. PubMed ID: 11954795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of the electrophoretic properties of the ATP-sulfurylases, APS-reductases, and sulfite reductases from cultures of dissimilatory sulfate-reducing bacteria.
    Skyring GW; Trudinger PA
    Can J Microbiol; 1973 Mar; 19(3):375-80. PubMed ID: 4697263
    [No Abstract]   [Full Text] [Related]  

  • 27. Characterization of partial anaerobic metabolic pathway for 2,4,6-trinitrotoluene degradation by a sulfate-reducing bacterial consortium.
    Boopathy R; Manning JF
    Can J Microbiol; 1996 Dec; 42(12):1203-8. PubMed ID: 8989860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Desulfovibrio sp. genes involved in the respiration of sulfate during metabolism of hydrogen and lactate.
    Steger JL; Vincent C; Ballard JD; Krumholz LR
    Appl Environ Microbiol; 2002 Apr; 68(4):1932-7. PubMed ID: 11916715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Thiosulfate as an intermediate product of bacterial sulfate reduction].
    Vaĭnshteĭn MB; Matrosov AG; Baskunov BP; Ziakun AM; Ivanov MV
    Mikrobiologiia; 1980; 49(6):855-8. PubMed ID: 7207258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adenylylsulfate reductases from archaea and bacteria are 1:1 alphabeta-heterodimeric iron-sulfur flavoenzymes--high similarity of molecular properties emphasizes their central role in sulfur metabolism.
    Fritz G; Büchert T; Huber H; Stetter KO; Kroneck PM
    FEBS Lett; 2000 May; 473(1):63-6. PubMed ID: 10802060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemistry of dissimilatory sulphate reduction.
    Peck HD; LeGall J
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):443-66. PubMed ID: 6127735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.
    Susanti D; Mukhopadhyay B
    PLoS One; 2012; 7(9):e45313. PubMed ID: 23028926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study.
    Nagpal S; Chuichulcherm S; Livingston A; Peeva L
    Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer.
    Mussmann M; Richter M; Lombardot T; Meyerdierks A; Kuever J; Kube M; Glöckner FO; Amann R
    J Bacteriol; 2005 Oct; 187(20):7126-37. PubMed ID: 16199583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source.
    Badziong W; Thauer RK; Zeikus JG
    Arch Microbiol; 1978 Jan; 116(1):41-9. PubMed ID: 623496
    [No Abstract]   [Full Text] [Related]  

  • 37. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.
    Hubert C; Voordouw G
    Appl Environ Microbiol; 2007 Apr; 73(8):2644-52. PubMed ID: 17308184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nutritional aspects of dissimilatory sulfate reduction in the human large intestine.
    Willis CL; Cummings JH; Neale G; Gibson GR
    Curr Microbiol; 1997 Nov; 35(5):294-8. PubMed ID: 9462959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea.
    Bale SJ; Goodman K; Rochelle PA; Marchesi JR; Fry JC; Weightman AJ; Parkes RJ
    Int J Syst Bacteriol; 1997 Apr; 47(2):515-21. PubMed ID: 9103642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection.
    Sousa JR; Silveira CM; Fontes P; Roma-Rodrigues C; Fernandes AR; Van Driessche G; Devreese B; Moura I; Moura JJG; Almeida MG
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1455-1469. PubMed ID: 28847524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.