BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7747970)

  • 1. Anaerobic degradation of halogenated phenols by sulfate-reducing consortia.
    Häggblom MM; Young LY
    Appl Environ Microbiol; 1995 Apr; 61(4):1546-50. PubMed ID: 7747970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorophenol degradation coupled to sulfate reduction.
    Häggblom MM; Young LY
    Appl Environ Microbiol; 1990 Nov; 56(11):3255-60. PubMed ID: 2094244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids.
    Häggblom MM; Rivera MD; Young LY
    Appl Environ Microbiol; 1993 Apr; 59(4):1162-7. PubMed ID: 8476290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate.
    Kohring GW; Zhang XM; Wiegel J
    Appl Environ Microbiol; 1989 Oct; 55(10):2735-7. PubMed ID: 2604410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and characterization of a dehalogenating microorganism by terminal restriction fragment length polymorphism fingerprinting of 16S rRNA in a sulfidogenic, 2-bromophenol-utilizing enrichment.
    Fennell DE; Rhee SK; Ahn YB; Häggblom MM; Kerkhof LJ
    Appl Environ Microbiol; 2004 Feb; 70(2):1169-75. PubMed ID: 14766602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions.
    Monserrate E; Häggblom MM
    Appl Environ Microbiol; 1997 Oct; 63(10):3911-5. PubMed ID: 9480645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective synthesis of sulfate metabolites of chlorinated phenols.
    Lehmler HJ; He X; Li X; Duffel MW; Parkin S
    Chemosphere; 2013 Nov; 93(9):1965-71. PubMed ID: 23906814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for carboxylation-dehydroxylation of phenolic compounds by a methanogenic consortium.
    Bisaillon JG; Lépine F; Beaudet R; Sylvestre M
    Can J Microbiol; 1993 Jul; 39(7):642-8. PubMed ID: 8364800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic biodegradation of phenolic compounds in digested sludge.
    Boyd SA; Shelton DR; Berry D; Tiedje JM
    Appl Environ Microbiol; 1983 Jul; 46(1):50-4. PubMed ID: 6614908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive dechlorination of chlorophenols in estuarine sediments of Lake Shinji and Lake Nakaumi.
    Itoh K; Mihara Y; Tanimoto N; Shimada T; Suyama K
    J Environ Sci Health B; 2010 Jul; 45(5):399-407. PubMed ID: 20512730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol.
    Farrell A; Quilty B
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction.
    Phelps CD; Kazumi J; Young LY
    FEMS Microbiol Lett; 1996 Dec; 145(3):433-7. PubMed ID: 8978098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117.
    Marr J; Kremer S; Sterner O; Anke H
    Biodegradation; 1996 Apr; 7(2):165-71. PubMed ID: 8882808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic degradation of fluorinated aromatic compounds.
    Vargas C; Song B; Camps M; Häggblom MM
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):342-7. PubMed ID: 10772477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions.
    So CM; Young LY
    Environ Toxicol Chem; 2001 Mar; 20(3):473-8. PubMed ID: 11349845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics.
    Keller AH; Kleinsteuber S; Vogt C
    Microb Ecol; 2018 May; 75(4):941-953. PubMed ID: 29124312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4, 6-tribromophenol.
    Boyle AW; Phelps CD; Young LY
    Appl Environ Microbiol; 1999 Mar; 65(3):1133-40. PubMed ID: 10049873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of microbial consortia that reductively dechlorinate 4-chlorophenol and transform phenol to benzoate enriched from estuarine sediment of Lake Shinji.
    Itoh K; Mihara Y; Toshima Y; Suyama K
    J Environ Sci Health B; 2011; 46(2):181-90. PubMed ID: 21328126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments.
    Zhang X; Wiegel J
    Appl Environ Microbiol; 1990 Apr; 56(4):1119-27. PubMed ID: 2111112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing and sustaining 3-chlorophenol-degrading populations in up-flow anaerobic column reactors under circum-denitrifying conditions.
    Bae HS; Yamagishi T; Suwa Y
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):118-24. PubMed ID: 12073142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.