These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 7747970)
1. Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Häggblom MM; Young LY Appl Environ Microbiol; 1995 Apr; 61(4):1546-50. PubMed ID: 7747970 [TBL] [Abstract][Full Text] [Related]
2. Chlorophenol degradation coupled to sulfate reduction. Häggblom MM; Young LY Appl Environ Microbiol; 1990 Nov; 56(11):3255-60. PubMed ID: 2094244 [TBL] [Abstract][Full Text] [Related]
3. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Häggblom MM; Rivera MD; Young LY Appl Environ Microbiol; 1993 Apr; 59(4):1162-7. PubMed ID: 8476290 [TBL] [Abstract][Full Text] [Related]
4. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Kohring GW; Zhang XM; Wiegel J Appl Environ Microbiol; 1989 Oct; 55(10):2735-7. PubMed ID: 2604410 [TBL] [Abstract][Full Text] [Related]
5. Detection and characterization of a dehalogenating microorganism by terminal restriction fragment length polymorphism fingerprinting of 16S rRNA in a sulfidogenic, 2-bromophenol-utilizing enrichment. Fennell DE; Rhee SK; Ahn YB; Häggblom MM; Kerkhof LJ Appl Environ Microbiol; 2004 Feb; 70(2):1169-75. PubMed ID: 14766602 [TBL] [Abstract][Full Text] [Related]
6. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Monserrate E; Häggblom MM Appl Environ Microbiol; 1997 Oct; 63(10):3911-5. PubMed ID: 9480645 [TBL] [Abstract][Full Text] [Related]
7. Effective synthesis of sulfate metabolites of chlorinated phenols. Lehmler HJ; He X; Li X; Duffel MW; Parkin S Chemosphere; 2013 Nov; 93(9):1965-71. PubMed ID: 23906814 [TBL] [Abstract][Full Text] [Related]
8. Potential for carboxylation-dehydroxylation of phenolic compounds by a methanogenic consortium. Bisaillon JG; Lépine F; Beaudet R; Sylvestre M Can J Microbiol; 1993 Jul; 39(7):642-8. PubMed ID: 8364800 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic biodegradation of phenolic compounds in digested sludge. Boyd SA; Shelton DR; Berry D; Tiedje JM Appl Environ Microbiol; 1983 Jul; 46(1):50-4. PubMed ID: 6614908 [TBL] [Abstract][Full Text] [Related]
10. Reductive dechlorination of chlorophenols in estuarine sediments of Lake Shinji and Lake Nakaumi. Itoh K; Mihara Y; Tanimoto N; Shimada T; Suyama K J Environ Sci Health B; 2010 Jul; 45(5):399-407. PubMed ID: 20512730 [TBL] [Abstract][Full Text] [Related]
11. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. Farrell A; Quilty B J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. Phelps CD; Kazumi J; Young LY FEMS Microbiol Lett; 1996 Dec; 145(3):433-7. PubMed ID: 8978098 [TBL] [Abstract][Full Text] [Related]
13. Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Marr J; Kremer S; Sterner O; Anke H Biodegradation; 1996 Apr; 7(2):165-71. PubMed ID: 8882808 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic degradation of fluorinated aromatic compounds. Vargas C; Song B; Camps M; Häggblom MM Appl Microbiol Biotechnol; 2000 Mar; 53(3):342-7. PubMed ID: 10772477 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions. So CM; Young LY Environ Toxicol Chem; 2001 Mar; 20(3):473-8. PubMed ID: 11349845 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics. Keller AH; Kleinsteuber S; Vogt C Microb Ecol; 2018 May; 75(4):941-953. PubMed ID: 29124312 [TBL] [Abstract][Full Text] [Related]
17. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4, 6-tribromophenol. Boyle AW; Phelps CD; Young LY Appl Environ Microbiol; 1999 Mar; 65(3):1133-40. PubMed ID: 10049873 [TBL] [Abstract][Full Text] [Related]
18. Characterization of microbial consortia that reductively dechlorinate 4-chlorophenol and transform phenol to benzoate enriched from estuarine sediment of Lake Shinji. Itoh K; Mihara Y; Toshima Y; Suyama K J Environ Sci Health B; 2011; 46(2):181-90. PubMed ID: 21328126 [TBL] [Abstract][Full Text] [Related]
19. Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Zhang X; Wiegel J Appl Environ Microbiol; 1990 Apr; 56(4):1119-27. PubMed ID: 2111112 [TBL] [Abstract][Full Text] [Related]
20. Developing and sustaining 3-chlorophenol-degrading populations in up-flow anaerobic column reactors under circum-denitrifying conditions. Bae HS; Yamagishi T; Suwa Y Appl Microbiol Biotechnol; 2002 Jun; 59(1):118-24. PubMed ID: 12073142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]