These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 77484)

  • 61. [Neuroanatomical studies on pontine urine storage facilitatory areas in the cat brain. Part II. Output neuronal structures from the nucleus locus subcoeruleus and the nucleus reticularis pontis oralis].
    Kohama T
    Nihon Hinyokika Gakkai Zasshi; 1992 Sep; 83(9):1478-83. PubMed ID: 1434291
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Brain stem afferents to visual cortical areas 17, 18 and 19 in the cat, demonstrated by horseradish peroxidase.
    Törk I; Leventhal AG; Stone J
    Neurosci Lett; 1979 Mar; 11(3):247-52. PubMed ID: 514536
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Collateralization of brainstem pathways in the spinal ventral horn in rat as demonstrated with the retrograde fluorescent double-labeling technique.
    Huisman AM; Ververs B; Cavada C; Kuypers HG
    Brain Res; 1984 May; 300(2):362-7. PubMed ID: 6733479
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Descending connections from the brainstem to the spinal cord in the electric fish Eigenmannia. Quantitative description based on retrograde horseradish peroxidase and fluorescent-dye transport.
    Behrend K; Donicht M
    Brain Behav Evol; 1990; 35(4):227-39. PubMed ID: 2379082
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Morphological identification of brain stem neurones associated with predatory behaviour elicited by lateral hypothalamic electrical stimulation in the cat: a retrograde transport study using horseradish peroxidase subsequent to an electrolytic lesion.
    Cher L; Bandler R
    Brain Res; 1981 Nov; 224(1):141-8. PubMed ID: 7284828
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The identification of brainstem neurones projecting to thoracic respiratory motoneurones in the cat as demonstrated by retrograde transport of HRP.
    Rikard-Bell GC; Bystrzycka EK; Nail BS
    Brain Res Bull; 1985 Jan; 14(1):25-37. PubMed ID: 3986626
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study.
    Holstege G; Kuypers HG
    Prog Brain Res; 1982; 57():145-75. PubMed ID: 7156396
    [No Abstract]   [Full Text] [Related]  

  • 68. Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis).
    ten Donkelaar HJ; de Boer-van Huizen R; Schouten FT; Eggen SJ
    Neuroscience; 1981; 6(11):2297-312. PubMed ID: 7329548
    [No Abstract]   [Full Text] [Related]  

  • 69. Identification and somatotopic organization of nuclei projecting via the dorsolateral funiculus in rats: a retrograde tracing study using HRP slow-release gels.
    Watkins LR; Griffin G; Leichnetz GR; Mayer DJ
    Brain Res; 1981 Nov; 223(2):237-55. PubMed ID: 6169400
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Kölliker-Fuse nucleus: the principal source of pontine catecholaminergic cells projecting to the lumbar spinal cord of cat.
    Stevens RT; Hodge CJ; Apkarian AV
    Brain Res; 1982 May; 239(2):589-94. PubMed ID: 7093704
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Lamina I spinomesencephalic neurons in the cat ascend via the dorsolateral funiculi.
    Hylden JL; Hayashi H; Bennett GJ
    Somatosens Res; 1986; 4(1):31-41. PubMed ID: 3797913
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction.
    Loughlin SE; Foote SL; Bloom FE
    Neuroscience; 1986 Jun; 18(2):291-306. PubMed ID: 3736860
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Axonal projection of descending pathways responsible for eliciting forelimb stepping into the cat cervical spinal cord.
    Hishinuma M; Yamaguchi T
    Exp Brain Res; 1990; 82(3):597-605. PubMed ID: 1705518
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Funicular course of catecholamine fibers innervating the lumbar spinal cord of the cat.
    Stevens RT; Apkarian AV; Hodge CJ
    Brain Res; 1985 Jun; 336(2):243-51. PubMed ID: 4005583
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cells of origin of crossed and uncrossed corticospinal fibers in the cat: a quantitative horseradish peroxidase study.
    Armand J; Kuypers HG
    Exp Brain Res; 1980; 40(1):23-34. PubMed ID: 7418757
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A neuroanatomical search for glossopharyngeal efferents to the carotid body using the retrograde transport of horseradish peroxidase.
    Kalia M; Davies RO
    Brain Res; 1978 Jun; 149(2):477-81. PubMed ID: 78741
    [No Abstract]   [Full Text] [Related]  

  • 77. Identification and distribution of the spinal and hypophyseal projection neurons in the paraventricular nucleus of the rat. A light and electron microscopic study with the horseradish peroxidase method.
    Hosoya Y; Matsushita M
    Exp Brain Res; 1979 Apr; 35(2):315-31. PubMed ID: 86456
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The projections of locus coeruleus neurons to the spinal cord.
    Proudfit HK; Clark FM
    Prog Brain Res; 1991; 88():123-41. PubMed ID: 1813919
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differential uptake of HRP by intact axon terminals versus transected axons: a study on bulbospinal fibers in the dorsolateral funiculus.
    Fay RM; Johannessen JN; Zhang DX; Mayer DJ
    Neurosci Lett; 1990 Jul; 114(2):141-6. PubMed ID: 1697663
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets.
    Loughlin SE; Foote SL; Grzanna R
    Neuroscience; 1986 Jun; 18(2):307-19. PubMed ID: 3736861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.