BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 7748552)

  • 1. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 May; 14(5):1047-54. PubMed ID: 7748552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1.
    Taglialatela M; Ficker E; Wible BA; Brown AM
    EMBO J; 1995 Nov; 14(22):5532-41. PubMed ID: 8521810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines.
    Lopatin AN; Makhina EN; Nichols CG
    J Gen Physiol; 1995 Nov; 106(5):923-55. PubMed ID: 8648298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K(+)-selective permeation.
    Reuveny E; Jan YN; Jan LY
    Biophys J; 1996 Feb; 70(2):754-61. PubMed ID: 8789092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 Dec; 15(6):1441-7. PubMed ID: 8845166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel.
    Kubo Y; Murata Y
    J Physiol; 2001 Mar; 531(Pt 3):645-60. PubMed ID: 11251047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel.
    Lu Z; MacKinnon R
    Nature; 1994 Sep; 371(6494):243-6. PubMed ID: 7915826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inward rectification of the IRK1 channel expressed in Xenopus oocytes: effects of intracellular pH reveal an intrinsic gating mechanism.
    Shieh RC; John SA; Lee JK; Weiss JN
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):363-76. PubMed ID: 8841997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.
    Sabirov RZ; Tominaga T; Miwa A; Okada Y; Oiki S
    J Gen Physiol; 1997 Dec; 110(6):665-77. PubMed ID: 9382895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of rectification in inward-rectifier K+ channels.
    Guo D; Ramu Y; Klem AM; Lu Z
    J Gen Physiol; 2003 Apr; 121(4):261-75. PubMed ID: 12642596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two aspects of the inward rectification mechanism. Effects of cytoplasmic blockers and extracellular K+ on the inward rectifier K+ channel.
    Kubo Y
    Jpn Heart J; 1996 Sep; 37(5):631-41. PubMed ID: 8973376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inward rectification of the IRK1 K+ channel reconstituted in lipid bilayers.
    Aleksandrov A; Velimirovic B; Clapham DE
    Biophys J; 1996 Jun; 70(6):2680-7. PubMed ID: 8744305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ring of negative charge in BK channels facilitates block by intracellular Mg2+ and polyamines through electrostatics.
    Zhang Y; Niu X; Brelidze TI; Magleby KL
    J Gen Physiol; 2006 Aug; 128(2):185-202. PubMed ID: 16847096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1.
    Lee JK; John SA; Weiss JN
    J Gen Physiol; 1999 Apr; 113(4):555-64. PubMed ID: 10102936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification.
    Lu T; Nguyen B; Zhang X; Yang J
    Neuron; 1999 Mar; 22(3):571-80. PubMed ID: 10197536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue.
    Wible BA; Taglialatela M; Ficker E; Brown AM
    Nature; 1994 Sep; 371(6494):246-9. PubMed ID: 8078584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels.
    Taglialatela M; Wible BA; Caporaso R; Brown AM
    Science; 1994 May; 264(5160):844-7. PubMed ID: 8171340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A weakly inward rectifying potassium channel of the salmon brain. Glutamate 179 in the second transmembrane domain is insufficient for strong rectification.
    Kubo Y; Miyashita T; Kubokawa K
    J Biol Chem; 1996 Jun; 271(26):15729-35. PubMed ID: 8663136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.