These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7748553)

  • 1. K+ pore structure revealed by reporter cysteines at inner and outer surfaces.
    Pascual JM; Shieh CC; Kirsch GE; Brown AM
    Neuron; 1995 May; 14(5):1055-63. PubMed ID: 7748553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels.
    Pascual JM; Shieh CC; Kirsch GE; Brown AM
    Biophys J; 1995 Aug; 69(2):428-34. PubMed ID: 8527656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of K+/Rb+ selectivity and internal TEA blockade by mutations at a single site in K+ pores.
    Taglialatela M; Drewe JA; Kirsch GE; De Biasi M; Hartmann HA; Brown AM
    Pflugers Arch; 1993 Apr; 423(1-2):104-12. PubMed ID: 7683786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-activated potassium channels expressed from cloned complementary DNAs.
    Adelman JP; Shen KZ; Kavanaugh MP; Warren RA; Wu YN; Lagrutta A; Bond CT; North RA
    Neuron; 1992 Aug; 9(2):209-16. PubMed ID: 1497890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between the deep pores of K+ channels determined by an interacting pair of nonpolar amino acids.
    Kirsch GE; Drewe JA; Hartmann HA; Taglialatela M; de Biasi M; Brown AM; Joho RH
    Neuron; 1992 Mar; 8(3):499-505. PubMed ID: 1550675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs.
    Liman ER; Tytgat J; Hess P
    Neuron; 1992 Nov; 9(5):861-71. PubMed ID: 1419000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of ionic selectivity of a K+ channel by mutation of the H5 region.
    Yool AJ; Schwarz TL
    Nature; 1991 Feb; 349(6311):700-4. PubMed ID: 1899917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional architecture of the inner pore of a voltage-gated Ca2+ channel.
    Zhen XG; Xie C; Fitzmaurice A; Schoonover CE; Orenstein ET; Yang J
    J Gen Physiol; 2005 Sep; 126(3):193-204. PubMed ID: 16129770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of a conserved aspartate in the external mouth of voltage-gated potassium channels.
    Kirsch GE; Pascual JM; Shieh CC
    Biophys J; 1995 May; 68(5):1804-13. PubMed ID: 7612822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural motif for the voltage-gated potassium channel pore.
    Lipkind GM; Hanck DA; Fozzard HA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of an engineered pore cysteine locks a voltage-gated K+ channel in a nonconducting state.
    Zhang HJ; Liu Y; Zühlke RD; Joho RH
    Biophys J; 1996 Dec; 71(6):3083-90. PubMed ID: 8968579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cysteine substitutions on the topology of the S4 segment of the Shaker potassium channel: implications for molecular models of gating.
    Wang MH; Yusaf SP; Elliott DJ; Wray D; Sivaprasadarao A
    J Physiol; 1999 Dec; 521 Pt 2(Pt 2):315-26. PubMed ID: 10581304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues in a jellyfish shaker-like channel involved in modulation by external potassium.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1740-7. PubMed ID: 10515963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.
    Aiyar J; Nguyen AN; Chandy KG; Grissmer S
    Biophys J; 1994 Dec; 67(6):2261-4. PubMed ID: 7696467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
    Gonzalez C; Morera FJ; Rosenmann E; Alvarez O; Latorre R
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5020-5. PubMed ID: 15774578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interactions between K+ pore residues located in different subunits.
    Kirsch GE; Drewe JA; De Biasi M; Hartmann HA; Brown AM
    J Biol Chem; 1993 Jul; 268(19):13799-804. PubMed ID: 8314749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.
    Yellen G; Jurman ME; Abramson T; MacKinnon R
    Science; 1991 Feb; 251(4996):939-42. PubMed ID: 2000494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ channels.
    Shieh CC; Kirsch GE
    Biophys J; 1994 Dec; 67(6):2316-25. PubMed ID: 7696472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative interactions among subunits of a voltage-dependent potassium channel. Evidence from expression of concatenated cDNAs.
    Hurst RS; Kavanaugh MP; Yakel J; Adelman JP; North RA
    J Biol Chem; 1992 Nov; 267(33):23742-5. PubMed ID: 1385425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchange of conduction pathways between two related K+ channels.
    Hartmann HA; Kirsch GE; Drewe JA; Taglialatela M; Joho RH; Brown AM
    Science; 1991 Feb; 251(4996):942-4. PubMed ID: 2000495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.