These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7748553)

  • 21. Cysteine mutagenesis and computer modeling of the S6 region of an intermediate conductance IKCa channel.
    Simoes M; Garneau L; Klein H; Banderali U; Hobeila F; Roux B; Parent L; Sauvé R
    J Gen Physiol; 2002 Jul; 120(1):99-116. PubMed ID: 12084779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore.
    De Biasi M; Drewe JA; Kirsch GE; Brown AM
    Biophys J; 1993 Sep; 65(3):1235-42. PubMed ID: 8241404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels.
    Butler A; Tsunoda S; McCobb DP; Wei A; Salkoff L
    Science; 1993 Jul; 261(5118):221-4. PubMed ID: 7687074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The S4-S5 loop contributes to the ion-selective pore of potassium channels.
    Slesinger PA; Jan YN; Jan LY
    Neuron; 1993 Oct; 11(4):739-49. PubMed ID: 8398157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subunit composition of minK potassium channels.
    Wang KW; Goldstein SA
    Neuron; 1995 Jun; 14(6):1303-9. PubMed ID: 7605639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Side-chain accessibilities in the pore of a K+ channel probed by sulfhydryl-specific reagents after cysteine-scanning mutagenesis.
    Kürz LL; Zühlke RD; Zhang HJ; Joho RH
    Biophys J; 1995 Mar; 68(3):900-5. PubMed ID: 7756555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterns of internal and external tetraethylammonium block in four homologous K+ channels.
    Taglialatela M; Vandongen AM; Drewe JA; Joho RH; Brown AM; Kirsch GE
    Mol Pharmacol; 1991 Aug; 40(2):299-307. PubMed ID: 1875913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-function analysis of the bestrophin family of anion channels.
    Tsunenari T; Sun H; Williams J; Cahill H; Smallwood P; Yau KW; Nathans J
    J Biol Chem; 2003 Oct; 278(42):41114-25. PubMed ID: 12907679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacology and surface electrostatics of the K channel outer pore vestibule.
    Quinn CC; Begenisich T
    J Membr Biol; 2006; 212(1):51-60. PubMed ID: 17206516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytoplasmic amino and carboxyl domains form a wide intracellular vestibule in an inwardly rectifying potassium channel.
    Lu T; Zhu YG; Yang J
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9926-31. PubMed ID: 10449796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexibility of the Kir6.2 inward rectifier K(+) channel pore.
    Loussouarn G; Phillips LR; Masia R; Rose T; Nichols CG
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4227-32. PubMed ID: 11274446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
    Lopez GA; Jan YN; Jan LY
    Nature; 1994 Jan; 367(6459):179-82. PubMed ID: 8114915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels.
    MacKinnon R; Yellen G
    Science; 1990 Oct; 250(4978):276-9. PubMed ID: 2218530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local movement in the S2 region of the voltage-gated potassium channel hKv2.1 studied using cysteine mutagenesis.
    Milligan CJ; Wray D
    Biophys J; 2000 Apr; 78(4):1852-61. PubMed ID: 10733965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gating currents from a delayed rectifier K+ channel with altered pore structure and function.
    Taglialatela M; Kirsch GE; VanDongen AM; Drewe JA; Hartmann HA; Joho RH; Stefani E; Brown AM
    Biophys J; 1992 Apr; 62(1):34-6. PubMed ID: 1376170
    [No Abstract]   [Full Text] [Related]  

  • 36. Molecular cloning and functional characterization of a novel delayed rectifier potassium channel from channel catfish (Ictalurus punctatus): expression in taste buds.
    Kang J; Teeter JH; Brazier SP; Nguyen ND; Chang CC; Puchalski RB
    J Neurochem; 2001 Mar; 76(5):1465-74. PubMed ID: 11238731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR.
    Coulter KL; Périer F; Radeke CM; Vandenberg CA
    Neuron; 1995 Nov; 15(5):1157-68. PubMed ID: 7576658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.
    Sesti F; Tai KK; Goldstein SA
    Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inward rectifier potassium channel Kir 2.3 is inhibited by internal sulfhydryl modification.
    Radeke CM; Conti LR; Vandenberg CA
    Neuroreport; 1999 Nov; 10(16):3277-82. PubMed ID: 10599834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.