BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 7748884)

  • 21. Cell-free NADPH oxidase activation assays: "in vitro veritas".
    Pick E
    Methods Mol Biol; 2014; 1124():339-403. PubMed ID: 24504963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Molecular aspects of chronic granulomatous disease. "the NADPH oxidase complex"].
    Morel F
    Bull Acad Natl Med; 2007 Feb; 191(2):377-90; discussion 390-2. PubMed ID: 17969555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reconstitution of microsomal redox chains. A comparitive analysis of the effectiveness of membrane self-assembly and template binding of electron carriers.
    Archakov AI; Bachmanova GI; Devichensky YM; Karuzina II; Zherebkova NS; Alimov GA; Kuznetsova GP; Karyakin AV
    Biochem J; 1974 Oct; 144(1):1-9. PubMed ID: 4156829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1984 Oct; 223(2):337-44. PubMed ID: 6497852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane association of Rac is required for high activity of the respiratory burst oxidase.
    Kreck ML; Freeman JL; Abo A; Lambeth JD
    Biochemistry; 1996 Dec; 35(49):15683-92. PubMed ID: 8961931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-step immunoaffinity purification and functional reconstitution of human phagocyte flavocytochrome b.
    Lord CI; Riesselman MH; Gripentrog JM; Burritt JB; Jesaitis AJ; Taylor RM
    J Immunol Methods; 2008 Jan; 329(1-2):201-7. PubMed ID: 17996248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partial purification of the superoxide-generating system of macrophages. Possible association of the NADPH oxidase activity with a low-potential (-247 mV) cytochrome b.
    Berton G; Papini E; Cassatella MA; Bellavite P; Rossi F
    Biochim Biophys Acta; 1985 Nov; 810(2):164-73. PubMed ID: 4063352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulation of superoxide production by the NADPH oxidase of neutrophils and other mammalian cells.
    Jones OT
    Bioessays; 1994 Dec; 16(12):919-23. PubMed ID: 7840772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Affinity-labeling of an NADPH-binding site on the heavy subunit of flavocytochrome b558 in particulate NADPH oxidase from activated human neutrophils.
    Ravel P; Lederer F
    Biochem Biophys Res Commun; 1993 Oct; 196(2):543-52. PubMed ID: 8240326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar B lymphocytes and B cell lines.
    Maly FE; Nakamura M; Gauchat JF; Urwyler A; Walker C; Dahinden CA; Cross AR; Jones OT; de Weck AL
    J Immunol; 1989 Feb; 142(4):1260-7. PubMed ID: 2536769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macrophage deactivation. Altered kinetic properties of superoxide-producing enzyme after exposure to tumor cell-conditioned medium.
    Tsunawaki S; Nathan CF
    J Exp Med; 1986 Oct; 164(4):1319-31. PubMed ID: 3020151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of cytochrome b-559 in arachidonic acid activation of resting human neutrophils.
    Amit N; Huu TP; Sourbier P; Marquetty C; Hakim J
    Biochim Biophys Acta; 1988 Oct; 944(3):437-43. PubMed ID: 2846062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a thermolabile component of the human neutrophil NADPH oxidase. A model for chronic granulomatous disease caused by deficiency of the p67-phox cytosolic component.
    Erickson RW; Malawista SE; Garrett MC; Van Blaricom G; Leto TL; Curnutte JT
    J Clin Invest; 1992 May; 89(5):1587-95. PubMed ID: 1314852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NADPH-binding component of the respiratory burst oxidase system: studies using neutrophil membranes from patients with chronic granulomatous disease lacking the beta-subunit of cytochrome b558.
    Tsunawaki S; Mizunari H; Namiki H; Kuratsuji T
    J Exp Med; 1994 Jan; 179(1):291-7. PubMed ID: 8270871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NADPH-cytochrome c reductase from human neutrophil membranes: purification, characterization and localization.
    Nisimoto Y; Otsuka-Murakami H; Iwata S
    Biochem J; 1994 Feb; 297 ( Pt 3)(Pt 3):585-93. PubMed ID: 8110198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sulfo-SADP (sulfosuccinimidyl[4-azidophenyldithio]propionate) an active site directed reagent inhibiting the NADPH dependent O2- generation of leukocyte cytochrome b(558).
    Cheng M; Guillory RJ
    J Biochem Mol Biol Biophys; 2002 Jun; 6(3):177-84. PubMed ID: 12186752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies of cytochrome b-245 translocation in the PMA stimulation of the human neutrophil NADPH-oxidase.
    Higson FK; Durbin L; Pavlotsky N; Tauber AI
    J Immunol; 1985 Jul; 135(1):519-24. PubMed ID: 2987348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Affinity purification and reconstitution of human phagocyte flavocytochrome B for detection of conformational dynamics in the membrane.
    Riesselman M; Jesaitis AJ
    Methods Mol Biol; 2014; 1124():413-26. PubMed ID: 24504965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spontaneous activation of NADPH oxidase in a cell-free system: unexpected multiple effects of magnesium ion concentrations.
    Cross AR; Erickson RW; Ellis BA; Curnutte JT
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):229-33. PubMed ID: 9931320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation from neutrophil membranes of a complex containing active NADPH oxidase and cytochrome b-245.
    Serra MC; Bellavite P; Davoli A; Bannister JV; Rossi F
    Biochim Biophys Acta; 1984 Jul; 788(1):138-46. PubMed ID: 6743661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.