These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7748946)

  • 1. Characterization of a nucleolar 2'-O-methyltransferase and its involvement in the methylation of mouse precursor ribosomal RNA.
    Eichler DC
    Biochimie; 1994; 76(12):1115-22. PubMed ID: 7748946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The specificity of interaction between S-adenosyl-L-methionine and a nucleolar 2'-O-methyltransferase.
    Segal DM; Eichler DC
    Arch Biochem Biophys; 1989 Dec; 275(2):334-43. PubMed ID: 2596846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nucleolar 2'-O-methyltransferase. Specificity and evidence for its role in the methylation of mouse 28 S precursor ribosomal RNA.
    Segal DM; Eichler DC
    J Biol Chem; 1991 Dec; 266(36):24385-9. PubMed ID: 1761539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of the Methyl Donor
    Aouadi W; Blanjoie A; Vasseur JJ; Debart F; Canard B; Decroly E
    J Virol; 2017 Mar; 91(5):. PubMed ID: 28031370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA.
    Yan F; LaMarre JM; Röhrich R; Wiesner J; Jomaa H; Mankin AS; Fujimori DG
    J Am Chem Soc; 2010 Mar; 132(11):3953-64. PubMed ID: 20184321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of adenosine-based ligands to the MjDim1 rRNA methyltransferase: implications for reaction mechanism and drug design.
    O'Farrell HC; Musayev FN; Scarsdale JN; Rife JP
    Biochemistry; 2010 Mar; 49(12):2697-704. PubMed ID: 20163168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site and substrate specificity of the ermC 23S rRNA methyltransferase.
    Denoya CD; Dubnau D
    J Bacteriol; 1987 Aug; 169(8):3857-60. PubMed ID: 2440853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa.
    Itoh N; Iwata C; Toda H
    BMC Plant Biol; 2016 Aug; 16(1):180. PubMed ID: 27549218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of S-adenosylmethionine impacts on ribosome biogenesis through hypomodification of a single rRNA methylation.
    Ishiguro K; Arai T; Suzuki T
    Nucleic Acids Res; 2019 May; 47(8):4226-4239. PubMed ID: 30799486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into substrate selectivity of ribosomal RNA methyltransferase RlmCD.
    Jiang Y; Li F; Wu J; Shi Y; Gong Q
    PLoS One; 2017; 12(9):e0185226. PubMed ID: 28949991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal RNA guanine-(N2)-methyltransferases and their targets.
    Sergiev PV; Bogdanov AA; Dontsova OA
    Nucleic Acids Res; 2007; 35(7):2295-301. PubMed ID: 17389639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism.
    Dong H; Ren S; Zhang B; Zhou Y; Puig-Basagoiti F; Li H; Shi PY
    J Virol; 2008 May; 82(9):4295-307. PubMed ID: 18305027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Assays for RNA Methyltransferase Activity.
    Haag S; Sloan KE; Höbartner C; Bohnsack MT
    Methods Mol Biol; 2017; 1562():259-268. PubMed ID: 28349466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of glycine N-methyltransferase.
    Takata Y; Huang Y; Komoto J; Yamada T; Konishi K; Ogawa H; Gomi T; Fujioka M; Takusagawa F
    Biochemistry; 2003 Jul; 42(28):8394-402. PubMed ID: 12859184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Biophysical Characterization of the S-Adenosylmethionine-dependent O-Methyltransferase PaMTH1, a Putative Enzyme Accumulating during Senescence of Podospora anserina.
    Chatterjee D; Kudlinzki D; Linhard V; Saxena K; Schieborr U; Gande SL; Wurm JP; Wöhnert J; Abele R; Rogov VV; Dötsch V; Osiewacz HD; Sreeramulu S; Schwalbe H
    J Biol Chem; 2015 Jun; 290(26):16415-30. PubMed ID: 25979334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase.
    Brecher MB; Li Z; Zhang J; Chen H; Lin Q; Liu B; Li H
    Protein Sci; 2015 Jan; 24(1):117-28. PubMed ID: 25352331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase.
    Wurm JP; Meyer B; Bahr U; Held M; Frolow O; Kötter P; Engels JW; Heckel A; Karas M; Entian KD; Wöhnert J
    Nucleic Acids Res; 2010 Apr; 38(7):2387-98. PubMed ID: 20047967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria.
    Bussiere DE; Muchmore SW; Dealwis CG; Schluckebier G; Nienaber VL; Edalji RP; Walter KA; Ladror US; Holzman TF; Abad-Zapatero C
    Biochemistry; 1998 May; 37(20):7103-12. PubMed ID: 9585521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NodS is an S-adenosyl-L-methionine-dependent methyltransferase that methylates chitooligosaccharides deacetylated at the non-reducing end.
    Geelen D; Leyman B; Mergaert P; Klarskov K; Van Montagu M; Geremia R; Holsters M
    Mol Microbiol; 1995 Jul; 17(2):387-97. PubMed ID: 7494487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity chromatography of Ruta graveolens L. O-methyltransferases. Studies demonstrating the potential of the technique in the mechanistic investigation of O-methyltransferases.
    Sharma SK; Brown SA
    Can J Biochem; 1979 Jul; 57(7):986-94. PubMed ID: 487245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.