These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7748999)

  • 1. Hydroxyapatite-based porous aggregates: physico-chemical nature, structure, texture and architecture.
    Fabbri M; Celotti GC; Ravaglioli A
    Biomaterials; 1995 Feb; 16(3):225-8. PubMed ID: 7748999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of porous hydroxyapatite granules.
    Liu DM
    Biomaterials; 1996 Oct; 17(20):1955-7. PubMed ID: 8894087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure.
    Werner J; Linner-Krcmar B; Friess W; Greil P
    Biomaterials; 2002 Nov; 23(21):4285-94. PubMed ID: 12194531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress.
    Le Huec JC; Schaeverbeke T; Clement D; Faber J; Le Rebeller A
    Biomaterials; 1995 Jan; 16(2):113-8. PubMed ID: 7734643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone.
    Joschek S; Nies B; Krotz R; Göferich A
    Biomaterials; 2000 Aug; 21(16):1645-58. PubMed ID: 10905406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.
    Shareef MY; Messer PF; van Noort R
    Biomaterials; 1993; 14(1):69-75. PubMed ID: 8381034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system.
    Netz DJ; Sepulveda P; Pandolfelli VC; Spadaro AC; Alencastre JB; Bentley MV; Marchetti JM
    Int J Pharm; 2001 Feb; 213(1-2):117-25. PubMed ID: 11165099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porosity-graded hydroxyapatite ceramics to replace natural bone.
    Tampieri A; Celotti G; Sprio S; Delcogliano A; Franzese S
    Biomaterials; 2001 Jun; 22(11):1365-70. PubMed ID: 11336309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I.
    Gosain AK; Song L; Riordan P; Amarante MT; Nagy PG; Wilson CR; Toth JM; Ricci JL
    Plast Reconstr Surg; 2002 Feb; 109(2):619-30. PubMed ID: 11818845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of bioceramic surfaces with controlled porosity.
    Piddock V
    Int J Prosthodont; 1991; 4(1):58-62. PubMed ID: 1849411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoretic deposition of porous hydroxyapatite scaffold.
    Ma J; Wang C; Peng KW
    Biomaterials; 2003 Sep; 24(20):3505-10. PubMed ID: 12809779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics.
    Knepper M; Moricca S; Milthorpe BK
    Biomaterials; 1997 Dec; 18(23):1523-9. PubMed ID: 9430334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry and sintering behaviour of thin hydroxyapatite ceramics with controlled porosity.
    Arita IH; Wilkinson DS; Mondragón MA; Castaño VM
    Biomaterials; 1995 Mar; 16(5):403-8. PubMed ID: 7662826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Diffusion bonding of hydroxyapatite ceramics and biometals].
    Yamane F
    Shika Zairyo Kikai; 1990 Mar; 9(2):133-45. PubMed ID: 2135505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of in vivo biocompatibility and dynamics of replacement of rat shin defect with porous granulated bioceramic materials.
    Chissov VI; Sviridova IK; Sergeeva NS; Frank GA; Kirsanova VA; Achmedova SA; Reshetov IV; Filjushin MM; Barinov SM; Fadeeva IV; Komlev VS
    Bull Exp Biol Med; 2008 Jul; 146(1):139-43. PubMed ID: 19145372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Dec; 18(12):2319-29. PubMed ID: 17569009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics.
    Porter AE; Patel N; Skepper JN; Best SM; Bonfield W
    Biomaterials; 2003 Nov; 24(25):4609-20. PubMed ID: 12951004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.