These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 7749003)
1. Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry. Loke WK; Khor E Biomaterials; 1995 Feb; 16(3):251-8. PubMed ID: 7749003 [TBL] [Abstract][Full Text] [Related]
2. A mechanism for the decrease in stiffness of bioprosthetic heart valve tissues after cross-linking. Vesely I ASAIO J; 1996; 42(6):993-9. PubMed ID: 8959274 [TBL] [Abstract][Full Text] [Related]
3. Comparison of tensile properties of xenopericardium from three animal species and finite element analysis for bioprosthetic heart valve tissue. Rassoli A; Fatouraee N; Guidoin R; Zhang Z Artif Organs; 2020 Mar; 44(3):278-287. PubMed ID: 31386771 [TBL] [Abstract][Full Text] [Related]
4. The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials. Bezuidenhout D; Oosthuysen A; Human P; Weissenstein C; Zilla P Biotechnol Appl Biochem; 2009 Nov; 54(3):133-40. PubMed ID: 19882764 [TBL] [Abstract][Full Text] [Related]
5. A multi-step approach in anti-calcification of glutaraldehyde-preserved bovine pericardium. Neethling WM; Hodge AJ; Clode P; Glancy R J Cardiovasc Surg (Torino); 2006 Dec; 47(6):711-8. PubMed ID: 17043620 [TBL] [Abstract][Full Text] [Related]
6. Glutaraldehyde detoxification in addition to enhanced amine cross-linking dramatically reduces bioprosthetic tissue calcification in the rat model. Weissenstein C; Human P; Bezuidenhout D; Zilla P J Heart Valve Dis; 2000 Mar; 9(2):230-40. PubMed ID: 10772041 [TBL] [Abstract][Full Text] [Related]
7. A comparative study of different tissue materials for bioprosthetic aortic valves using experimental assays and finite element analysis. Rassoli A; Fatouraee N; Guidoin R; Zhang Z; Ravaghi S Comput Methods Programs Biomed; 2022 Jun; 220():106813. PubMed ID: 35461127 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium. Santoro R; Consolo F; Spiccia M; Piola M; Kassem S; Prandi F; Vinci MC; Forti E; Polvani G; Fiore GB; Soncini M; Pesce M J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):345-56. PubMed ID: 25809726 [TBL] [Abstract][Full Text] [Related]
9. Donkey pericardium as an alternative bioprosthetic heart valve material. Chen S; Xu L; Liu Y; Li Q; Wang D; Wang X; Liu T Artif Organs; 2013 Mar; 37(3):248-55. PubMed ID: 23145868 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds. Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592 [TBL] [Abstract][Full Text] [Related]
11. Microstructural alterations owing to handling of bovine pericardium to manufacture bioprosthetic heart valves: A potential risk for cusp dehiscence. Mao J; Wang Y; Philippe E; Cianciulli T; Vesely I; How D; Bourget JM; Germain L; Zhang Z; Guidoin R Morphologie; 2017 Jun; 101(333):77-87. PubMed ID: 28442174 [TBL] [Abstract][Full Text] [Related]
12. Examination of fixative penetration in glutaraldehyde-treated bovine pericardium by stratigraphic analysis of shrinkage temperature measurements using differential scanning calorimetry. Fisher J; Gorham SD; Howie AM; Wheatley DJ Life Support Syst; 1987; 5(3):189-93. PubMed ID: 3121939 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets. Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141 [TBL] [Abstract][Full Text] [Related]
14. Bovine pericardium versus porcine aortic valve: comparison of tissue biological properties as prosthetic valves. Liao K; Seifter E; Hoffman D; Yellin EL; Frater RW Artif Organs; 1992 Aug; 16(4):361-5. PubMed ID: 10078275 [TBL] [Abstract][Full Text] [Related]
15. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Jayakrishnan A; Jameela SR Biomaterials; 1996 Mar; 17(5):471-84. PubMed ID: 8991478 [TBL] [Abstract][Full Text] [Related]
16. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves. Zioupos P; Barbenel JC; Fisher J J Biomed Mater Res; 1994 Jan; 28(1):49-57. PubMed ID: 8126028 [TBL] [Abstract][Full Text] [Related]
17. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study. Simionescu DT; Lovekamp JJ; Vyavahare NR J Heart Valve Dis; 2003 Mar; 12(2):226-34. PubMed ID: 12701796 [TBL] [Abstract][Full Text] [Related]
18. The chemical protecting group concept applied in crosslinking of natural tissues with glutaraldehyde acetals. Goissis G; Yoshioka SA; Braile DM; Ramirez VD Artif Organs; 1998 Mar; 22(3):210-4. PubMed ID: 9527281 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent. Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical and structural properties of the explanted bioprosthetic valve leaflets. Purinya B; Kasyanov V; Volkolakov J; Latsis R; Tetere G J Biomech; 1994 Jan; 27(1):1-11. PubMed ID: 8106530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]